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micro-to-macro:
excitation of stringy Pomeron

• stringy Pomeron: Stoffers-Zahed model

• T=>T(Hagedorn) in bulk and for one string

• transition to explosive regime

• black hole connection



stringy Pomeron
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which is seen to satisfy the zero pressure con-
dition S ⇡ �HE in leading order. They are the

tachyonic energy and entropy in the Hagedorn
limit discussed above. This is expected since
the modular transform allows us to cross from
the � < b regime of long and close strings, to
the � > b of short and open strings. The two
descriptions match at the border b ⇡ �.

[1] A. Sto↵ers and I. Zahed, arXiv:1211.3077
[nucl-th].

[2] I. Zahed, arXiv:1211.6421 [hep-ph].
[3] E. V. Shuryak, Phys. Lett. B 78, 150 (1978)

[Sov. J. Nucl. Phys. 28, 408 (1978)] [Yad. Fiz.
28, 796 (1978)].

[4] E. V. Shuryak and O. V. Zhirov, Phys. Lett.
B 89, 253 (1979).

[5] T. C. Brooks et al. [MiniMax Collaboration],
Phys. Rev. D 61, 032003 (2000) [arXiv:hep-
ex/9906026].

[6] Observation of Long-Range, Near-Side Angu-
lar Correlations in Proton-Proton Collisions at
the LHC, The CMS Collaboration, submitted
to Journal of High Energy Physics, presented
at CERN seminar Sept.21,2010.

[7] S. Chatrchyan et al. [CMS Collaboration],
[arXiv:1210.5482 [nucl-ex]].

[8] B. Abelev et al. [ ALICE Collaboration],
arXiv:1212.2001 [nucl-ex].

[9] G. Aad et al. [ ATLAS Collaboration],
arXiv:1212.5198 [hep-ex].

[10] E. Shuryak, arXiv:1009.4635 [hep-ph].
[11] P. Bozek, Phys. Rev. C 85, 014911 (2012)

[arXiv:1112.0915 [hep-ph]].
[12] E. A. Kuraev, L. N. Lipatov and V. S. Fadin,

Sov. Phys. JETP 45, 199 (1978) Ya. Ya. Balit-
sky and L. N. Lipatov, Sov. J. Nucl. Phys. 28,
22 (1978)

[13] M. Rho, S. -J. Sin, I. Zahed, Phys. Lett. B466,
199-205 (1999). [hep-th/9907126].

[14] R. A. Janik and R. B. Peschanski, Nucl.
Phys. B 565, 193 (2000) [hep-th/9907177];
Nucl. Phys. B625, 279-294 (2002). [hep-
th/0110024]; Nucl. Phys. B586, 163-182
(2000). [hep-th/0003059]; R. A. Janik, Phys.
Lett. B 500, 118 (2001) [hep-th/0010069].

[15] J. Polchinski and M. J. Strassler, JHEP 0305,
012 (2003) [hep-th/0209211]; R. C. Brower,
J. Polchinski, M. J. Strassler and C. I. Tan,
JHEP 0712, 005 (2007) [hep-th/0603115];
R. C. Brower, M. J. Strassler and C. -ITan,
JHEP 0903, 092 (2009) [arXiv:0710.4378 [hep-
th]].

[16] L. Cornalba, M. S. Costa and J. Pene-

dones, Phys. Rev. Lett. 105, 072003 (2010)
[arXiv:1001.1157 [hep-ph]]; L. Cornalba,
M. S. Costa, J. Penedones and P. Vieira, JHEP
0612, 023 (2006) [hep-th/0607083].

[17] G. Basar, D. E. Kharzeev, H. -U. Yee and I. Za-
hed, arXiv:1202.0831 [hep-th].

[18] S. S. Gubser, Phys. Rev. D 82, 085027 (2010)
[arXiv:1006.0006 [hep-th]].

[19] S. S. Gubser and A. Yarom, Nucl. Phys. B 846,
469 (2011) [arXiv:1012.1314 [hep-th]].

[20] M. Lublinsky and E. Shuryak, Phys. Rev. D
80, 065026 (2009) [arXiv:0905.4069 [hep-ph]].

[21] P. Staig and E. Shuryak, Phys. Rev. C 84,
034908 (2011) [arXiv:1008.3139 [nucl-th]].

[22] R. A. Lacey, Y. Gu, X. Gong, D. Reynolds,
N. N. Ajitanand, J. M. Alexander, A. Mwai
and A. Taranenko, arXiv:1301.0165 [nucl-ex].

[23] P. Staig and E. Shuryak, Phys. Rev. C 84,
044912 (2011) [arXiv:1105.0676 [nucl-th]].

[24] G. Policastro, D. T. Son and A. O. Starinets,
Phys. Rev. Lett. 87, 081601 (2001) [hep-
th/0104066].

[25] S. Bhattacharyya, V. Hubeny, S. Minwalla
and M. Rangamani, JHEP 0802, 045 (2008)
[arXiv:0712.2456 [hep-th]].

[26] E. Shuryak, Phys. Rev. C 86, 024907 (2012)
[arXiv:1203.6614 [hep-ph]].

[27] M. P. Heller, R. A. Janik and P. Witaszczyk,
Phys. Rev. Lett. 108, 201602 (2012)
[arXiv:1103.3452 [hep-th]].

[28] D. Teaney, Phys. Rev. C 68, 034913 (2003)
[nucl-th/0301099].

[29] N. Borghini, PoS LHC 07, 013 (2007)
[arXiv:0707.0436 [nucl-th]].

[30] R. D. Pisarski and O. Alvarez, Phys. Rev. D
26, 3735 (1982).

[31] L. Susskind, In *Teitelboim, C. (ed.):
The black hole* 118-131 [hep-th/9309145];
L. Susskind, Phys. Rev. D 49, 6606 (1994)
[hep-th/9308139].

[32] A. Strominger and C. Vafa, Phys. Lett. B 379,
99 (1996) [hep-th/9601029]; G. T. Horowitz
and J. Polchinski, Phys. Rev. D 55 (1997) 6189
[hep-th/9612146]; R. R. Khuri, Nucl. Phys. B
588, 253 (2000) [hep-th/0006063].

13

Following this line of reasoning, and turning
to the case of pp and pA collisions, the sec-
ond parameter is no longer small. Therefore we
expect the validity region of the macroscopic
theory to be strongly reduced, say to a much
smaller region in pt/Tf ⇠ O(1).

We know it cannot be correct, as both CMS
and ATLAS are not even able to observe soft
particles. In fact, as seen from Fig.4e of [9], the
elliptic flow v2(pt) in pA rises linearly to about
2 GeV/c, where the presummed viscosity e↵ects
cause it to start decreasing. Furthermore, the
elliptic flow reaches there a magnitude compa-
rable with that in AA collisions. So, apparently
the experiment does not see an expected reduc-
tion of the hydro validity region!

The only way we think the data can be con-
sistent with theory is because the viscosity ⌘/s
should not be treated as a universal constant.
While its value extracted from hydro calcula-
tions of vn is an average over the whole duration
of the collision, the viscosity we discuss now is
at freeze-out. Perhaps its e↵ective value there
is even smaller than the average.

IV. EXPLOSIVE POMERON

A. Polyakov tachyon and the SZ model

The SZ model [1, 2] is based on bosonic string
exchanges between the colliding high energy
objects. It is essential that the QCD string
with a nonzero tension related to QCD con-
finement is used, and not the conformal super-
string which has a massless spin-2 graviton ex-
citation. There is no supersymmetry and gravi-
tons transmutes to a massive spin-2 glueball
with an exponentially small contribution in the
pomeron di↵usive limit [14, 17]. However there
is still a large Nc parameter, related with a
small string coupling gs and a large ’t Hooft
coupling � = gsNc so that 1/� e↵ects of the
curved geometry will be considered as sublead-
ing.

At very high energies the rapidity interval pa-
rameter is large

� = ln(s/s0) � 1 (48)

and will play the role of the e↵ective time in
what follows. Transverse momentum transfer

FIG. 7: Dipole-dipole scattering with separation b:
pomeron exchange (a); reggeon exchange (b).

is held fixed t = �q2 and soft. The main
phenomenon to be studied is the string di↵u-
sion. Two longitudinal directions – time and
the beam direction, also often used as light cone
variables x± – are complemented by two trans-
verse coordinates plus a “scale coordinate” z.
Its initial value corresponds to a physical size
of the colliding dipoles and di↵usion means the
production of small size closed strings. The z-
coordinate is not flat. We will model its metric
by an AdS5 with a wall. The number of trans-
verse coordinates, which will play an important
role in the following, is thus

D? = 3 (49)

We will now review the pomeron results and
its associated entropy in this setting. The am-
plitude of the elastic dipole-dipole scattering in
Fig. 7a reads [1, 2, 17]

1

�2is
T (s, t; k) ⇡ g2s

Z
d2b eiq·b KT (�,b; k)(50)

where KT is the pomeron propagator for dipole
sources of color Nc-ality k describing the string
flux. k runs over all integers till Nc/2 for even
Nc and Nc/2 + 1/2 for odd ones. In the real
world with the SU(3) color group, k = 1 is
the usual string between fundamental charges
(quarks) and the largest tension k = 2 is the one
between two baryon junctions. The first argu-
ment of the propagator is � = 2⇡b/�, where
b is the impact parameter. gs ⇡ 1/Nc is the
string coupling.
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The explicit form ofKT for the standard long
strings regime

b > � > �H (51)

follows from the Polyakov string action,

KT (�,b; k) =

✓
�

4⇡2b

◆D?/2

(52)

⇥
1X

n=0

d(n) e���b (1��2
H/2�2+4⇡n/��2)

We have defined � = �T /2, the Hagedorn in-
verse temperature as

�H =
p

⇡D?/3� (53)

and the inverse temperature as

�U = �/k =
2⇡b

�k
(54)

The subscript U is a reminder that it is basi-
cally the Unruh temperature related to a fixed
acceleration/tension. The asymptotic string
density of states is

d(n) ⇡ e2⇡
p

D? n/6/nD?/4 (55)

with the normalization d(0) = 1.
For high energies and large b – long strings

– the pomeron propagator KT to leading order
in 1/� obeys a di↵usion equation in rapidity �
and curved transverse space

�
@� +Dk

�
M2

0 �r2
b

��
KT = 0 (56)

with Dk = ↵0/k = l2s/k the pomeron di↵usion
constant. This di↵usion (56) is reminiscent of
Gribov di↵usion and implies on average

⌦
b2
↵
=

Dk� for close pomeron strings. For large b and
confining AdS backgrounds, the di↵usion takes
place near flat geometry (BH horizon or wall)
with a tachyon mass related to string modes

M2
0 =

4D?
↵0

 1X

n=1

n

e2�n/k � 1
� 1

24

!
(57)

with D? = 3 in AdS5 with a wall. A finite
size dipole sitting at a height z a finite distance
from the confining wall, experiences corrections

O(��1/2) due to the curvature in z. This results
in a shift of the tachyon mass

M2
0 ! M2

0 +
(D? � 1)2

4↵0
p
�

. (58)

Most of the arguments to follow will be carried
out for large � � 1 unless indicated otherwise,
so this e↵ect is considered small.

Inserting the leading n = 0 contribution of
(52) in (50) yields the pomeron contribution to
the elastic dipole-dipole scattering amplitude at
large � and fixed N-ality k

T (s, t; k) ⇡ ig2s

✓
s

s0

◆1+
kD?
12 +↵0

2k t

(59)

Thus the resulting pomeron is supercritical,
with the intercept above 1

↵P,k(0) = 1 +
kD?
12

! 1 +
kD?
12

� (D? � 1)2

8
p
�
(60)

where the first term is due to Casimir-Luscher
contribution and the 1/

p
� correction follows

from the tachyonic correction (58) as discussed
in [1].

The subcritical string regime discussed so far
is defined by the condition � = 2⇡b/� > �H

which translates to a rapidity range (collision
energies) � < 2 in the di↵usive limit

⌦
b2
↵
=

Dk�. A more precise bound follows from the
inclusion of the 1/� corrections in the tachyon
mass (58) or

� >
p
2(↵P � 1)�H (61)

This leads to the bound � < 10 for the cor-
rected phenomenological value of the pomeron
intercept ↵P � 1 = 0.08 in (60), which roughly
corresponds to energies below the LHC. This
condition discriminates between a sub-critical
and a critical string as we will detail below.
We note that (61) implies a strong coupling
renormalization of the Hagedorn temperature
through the geometry of AdS.

B. Reggeon

For completeness, we note that reggeon ex-
change with open strings can be addressed sim-
ilarly. For the Reggeon � = �T and the elastic
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a stringy cylinder generates temperature, 
entropy and even viscosity (Kubo)

1/T is circle’s sircumference,
so T is highest at the middle 
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scattering amplitude for dipoles of N-ality k as
shown in Fig. 7 b is now

T (s, t; k) ⇡ ig2s

⇣s0
s

⌘ ✓
s

s0

◆1+
kD?

6 +↵0t

(62)

with the extra s0/s pre-factor accounting for
the normalization of the spinors traveling on
the exchanged world-sheet. This point was
originally made in [14] but with di↵erent con-
clusions for the reggeon intercept. At large
s, the pomeron exchange is dominant. The
pomeron as a closed string can be viewed as
2 glued open strings or a pair of reggeons up
to spin factors. As a result the reggeon slope is
twice the pomeron slope while its intercept is
also twice the pomeron intercept.

C. Entropy

The pomeron described here is a non-critical
string inD?+2 = 5 dimensions in leading order
in 1/�. It carries a free energy F = �lnKT /�U

and the entropy [1, 2]

S = �D?

1X

n=1

✓
ln

�
1� e��kn

�
+

�kn

e�kn � 1

◆

+D?

✓
�k

12
� 1

2

✓
1 + ln

✓
�k

2⇡

◆◆◆
(63)

At large rapidity � the entropy is dominated by
the tachyon contribution

S ⇡ D?�k

12
(64)

Since �k = 2�/k the entropy scales with the
rapidity interval �. In contrast, the energy E ⇡
�b with on average

⌦
b2

↵ ⇡ Dk�, scales with
the root of the rapidity interval, and therefore
is subleading for asymptotically large �. This
is a major di↵erence between this regime and
the explosive string that we will discuss below.

Large particle multiplicities in pp, pA and
AA collisions based on (64) can be achieved
through multiple pomeron exchanges [1, 2] as
illustrated in Fig. 8. The multiple exchanges
start to interact as they di↵use transversely.

FIG. 8: Multi-pomeron contribution to dipole-
dipole scattering near saturation with sub-critical
string exchanges.

Their number density in transverse space is set
by the squared stringy saturation scale [1, 2].
Although each exchange is penalized by g2s ⇡
1/N2

c , it yields to a shadowing of the dipole-
dipole cross section and saturation after an
eikonalized resummation. The multiplicities
are found to be consistent with the bulk multi-
plicities at current collider energies.

In this scenario, the exchanged strings are
sub-critical with T < TH . They may turn into
an ideal fluid of string bits with very small
viscosity [2]. The stringy matter is released
sub-critical and non-explosive. It can trans-
mute to a black-hole on a time scale of order
t ⇡ (b/�)3/(4l2s) after the percolation in trans-
verse space [1].

D. Near-Hagedorn string and
Nambu-Goto tachyon

We recall that all the expressions discussed
above such as (52) for instance, were derived
using the scalar string or Polyakov action in the
regime �H < � < b dominated by the tachion

Near-Hagedorn regime: a string
gets excited into a string ball,
with growing entropy,energy
but not free energy (=p)!

5

the closed to open string tensions is �A/�F ⇡ 2
and that the Hagedorn temperature is propor-
tional to the square root of the string tension,
we expect TY M

c /TQCD
c ⇡ p2, which is about

the experimentally measured ratio.
We suggest that the behavior of a “string

ball”, created on a pomeron string as a fluctu-
ation, near the Hagedorn temperature or T ⇡
TH , should be very similar to that of strings
in thermal equilibrium and close to deconfine-
ment. The latter is referred to as the mixed
phase of pure gauge theories with Nc > 2. In-
deed, the gluodynamics transition is dominated
by a dilute gas of close strings each of which
carry a considerable stringy entropy. At the
Hagedorn point, this stringy entropy is best
packaged in a large and space filling string much
like our string ball.

We further suggest that this Hagedorn phe-
nomenon explains the significant increase of the
produced entropy and thus multiplicity of sec-
ondaries. We believe its possible production
in high-multiplicity pp collision is a new phe-
nomenon not discussed previously. Another
new element of our discussion (which is based
on some recent ideas and technical progress
in string theory) is the strong similarities we
demonstrate between this “string ball” and the
black hole, in terms of an e↵ective temperature-
entropy relations and even an e↵ective viscosity
we will evaluate.

Finally, we will argue that when the di↵er-
ence between T and TH becomes very small and
the energy (entropy) densities become as large
as

✏

T 4
H

⇡ s

T 3
H

⇡ N2
c (6)

a second qualitative change happens: the
“string ball” becomes explosive, as the pressure
is no longer small. We argue by analogy with
the thermodynamics of gauge theories: at some
entropy density the mixed phase ends and the
deconfined phase takes over. While we know it
is so in equilibrium, we suggest the same should
happen out of equilibrium, in a small fireball
originating from a string ball in a Pomeron. Its
direct observable consequence should be the ap-
pearance of a significant pressure p ⇡ ✏/3 and
subsequent hydro explosion. The appearance
of the (double) ridge in pp and pA collisions is

S

T 3

Tc TH T

A

B

FIG. 2: Schematic temperature dependence of the
entropy density. The dashed line represents equi-
librium gluodynamics with a first order transition
at T = Tc. The solid line between points A and B
represents the expected behavior of a single string
approaching its Hagedorn temperature TH .

perhaps the first observed experimental mani-
festation of this phenomenon.

II. HYDRODYNAMICS AT ITS EDGE:
STUDIES IN THE NAVIER-STOKES

APPROXIMATION

A. Ideal radial flow using Gubser’s
solution

Many groups have studied heavy ion colli-
sions by solving hydrodynamical equations nu-
merically. However, it is not really necessary
for the current purposes since there exist a rel-
atively simple analytic solution found by Gub-
ser [19], see also [20]. In this section we will
apply this solution and compare the AA hydro-
dynamics with pA and pp ones.

Gubser flow is a solution which keeps the
boost-invariance and the axial symmetry in the
transverse plane. It is obtained via symmetry
under special conformal transformation, and
therefore, the matter is required to be confor-
mal, with the EOS

✏ = 3p = T 4f⇤ (7)

Pure glue thermodynamics

now our paper

Polyakov, Susskind 1978



but when T is too close to T(Hagedorn),
transition to QGP happens, pressure grows 

and the ball can explode!

T=>TH

Hagedorn regime
string makes a ball

small F,p
large E,S
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KT is still dominated by the tachyon provided
that the impact parameter is larger than the
critical bC = ⇡ls. Clearly (66) reduces to (65)
for �H/� ⌧ 1.

The resummed expression (66) shows that
the Unruh temperature causes the string ten-
sion to vanish at the Hagedorn point

�
�
1� �2

H/�2
�1/2 ! 0 (67)

in agreement with the universal behavior ob-
served for static thermal strings [31]. As we
noted above, this occurs when the impact pa-
rameter b ⇡ �ls.

The scattering amplitude associated to the
NG tachyon can be obtained by inserting (66)
in (50). The result in the saddle point approx-
imation reads

T (s, t; 1) ⇡ ig2
s (68)
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with t ⌘ ↵0t and k = 1. (69) reduces to the
pomeron amplitude (59) for s� �t > 1/↵0.

The cross section �HM for the production of
near-critical strings or high multiplicity events
follows from (50), by the optical theorem , with
q = 0 and b ⇡ �ls. Specifically, for dipole-
dipole scattering with N-ality k = 1, one finds

�HM ⇡ g2
s

✓
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(69)
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The minimum bias cross section �MB has been
estimated in [17] after an eikonal resummation
of the subcritical strings,

�MB ⇡ ⇡D?↵0

3
�2 (71)

FIG. 10: The string ball: RH is the Rindler horizon
along the longitudinal direction L, with the string
streching along the transverse T direction with im-
pact parameter b.

The ratio of the high multiplicity events to the
minimum bias events can be estimated as

�HM

�MB
⇡ g2

s

1
�D?/2

✓
��

�H

◆
e��
p

��/2�H (72)

where we have dropped an overall number of
order 1 and D? = 3. For near critical strings
we have (70) and gs ⇡ 1/Nc. At LHC, � ⇡ 10
so that

�HM

�MB
⇡ 10�5 (73)

This estimate is comparable to the probability
of the high multiplicity trigger used by the CMS
collaboration for events displaying the ridge in
pp collisions at LHC.

E. The string ball as a black hole

We now show that the string at this point
transmutes to a string ball (dual to a black-
hole) with large energy and entropy. The near-
Hagedorn pomeron has a horizon located along
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pp collisions at LHC.

E. The string ball as a black hole

We now show that the string at this point
transmutes to a string ball (dual to a black-
hole) with large energy and entropy. The near-
Hagedorn pomeron has a horizon located along
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the closed to open string tensions is �A/�F ⇡ 2
and that the Hagedorn temperature is propor-
tional to the square root of the string tension,
we expect TY M

c /TQCD
c ⇡ p2, which is about

the experimentally measured ratio.
We suggest that the behavior of a “string

ball”, created on a pomeron string as a fluctu-
ation, near the Hagedorn temperature or T ⇡
TH , should be very similar to that of strings
in thermal equilibrium and close to deconfine-
ment. The latter is referred to as the mixed
phase of pure gauge theories with Nc > 2. In-
deed, the gluodynamics transition is dominated
by a dilute gas of close strings each of which
carry a considerable stringy entropy. At the
Hagedorn point, this stringy entropy is best
packaged in a large and space filling string much
like our string ball.

We further suggest that this Hagedorn phe-
nomenon explains the significant increase of the
produced entropy and thus multiplicity of sec-
ondaries. We believe its possible production
in high-multiplicity pp collision is a new phe-
nomenon not discussed previously. Another
new element of our discussion (which is based
on some recent ideas and technical progress
in string theory) is the strong similarities we
demonstrate between this “string ball” and the
black hole, in terms of an e↵ective temperature-
entropy relations and even an e↵ective viscosity
we will evaluate.

Finally, we will argue that when the di↵er-
ence between T and TH becomes very small and
the energy (entropy) densities become as large
as
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a second qualitative change happens: the
“string ball” becomes explosive, as the pressure
is no longer small. We argue by analogy with
the thermodynamics of gauge theories: at some
entropy density the mixed phase ends and the
deconfined phase takes over. While we know it
is so in equilibrium, we suggest the same should
happen out of equilibrium, in a small fireball
originating from a string ball in a Pomeron. Its
direct observable consequence should be the ap-
pearance of a significant pressure p ⇡ ✏/3 and
subsequent hydro explosion. The appearance
of the (double) ridge in pp and pA collisions is
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FIG. 2: Schematic temperature dependence of the
entropy density. The dashed line represents equi-
librium gluodynamics with a first order transition
at T = Tc. The solid line between points A and B
represents the expected behavior of a single string
approaching its Hagedorn temperature TH .

perhaps the first observed experimental mani-
festation of this phenomenon.

II. HYDRODYNAMICS AT ITS EDGE:
STUDIES IN THE NAVIER-STOKES

APPROXIMATION

A. Ideal radial flow using Gubser’s
solution

Many groups have studied heavy ion colli-
sions by solving hydrodynamical equations nu-
merically. However, it is not really necessary
for the current purposes since there exist a rel-
atively simple analytic solution found by Gub-
ser [19], see also [20]. In this section we will
apply this solution and compare the AA hydro-
dynamics with pA and pp ones.

Gubser flow is a solution which keeps the
boost-invariance and the axial symmetry in the
transverse plane. It is obtained via symmetry
under special conformal transformation, and
therefore, the matter is required to be confor-
mal, with the EOS

✏ = 3p = T 4f⇤ (7)



a string ball is dual to a black hole
The 

correspondence is 
usually derived via 

the entropy
 (=Hawking-Bekenstein)

But one can also 
calculate viscosity,
which gives 1/4pi
although the calculation is stringy 
not BH. (And even if BH it is 
very different from that in AdS/
CFT , not located in 5-th
dimension, so were surprised)
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ishingly smal pressure. To assess the transverse
viscosity of this string without recourse to a full
Nambu-Goto analysis, we make the key obser-
vation that in near Hagedorn regime the expo-
nents in (63) transmute to

�kn! �R n (83)

with n the Rindler frequency of the harmonic
oscillator. At large 1/�k or large Rindler tem-
perature 1/�R, the string energy and entropy
are dominated by the high modes in (63). We
have explicitly checked that the tachyon ther-
modynamics (74) and (76) follow from the large
n excitation spectrum of the NG string by us-
ing the modular transformation and the saddle
point approximation, as we detail in Appendix
B.

At the Hagedorn limit, a long and space fill-
ing string, with D? dimensions, is a very e�-
cient way to carry large entropy. The analogy
between a string ball and black hole thermody-
namics shows that in fact it carries the largest
entropy density possible! With this in mind and
for simplicity, consider a Polyakov string made
of D? harmonic oscillators immersed in a heat
bath with finite but large Rindler temperature
1/�R. The energy of the string is dominated by
the high frequency modes,

ER ⇡ D?

1X

n=1

n

e�Rn � 1
(84)

For large 1/�R it is black-body

ER ⇡ ⇡2

2�2
R

D?
3

(85)

Through the first law of thermodynamics (76)
we can enforce the zero pressure condition on
this highly excited string, with

S ⌘ SR ⇡ �RER =
⇡2

2�R

D?
3

(86)

G. Viscosity at the Rindler horizon

Viscosity can be defined via certain limits of
the correlators of the stress tensor, known as

the Kubo formula. Thus one does not need
hydrodynamics to calculate it, just the stress
tensor. To assess the primordial viscosity, we
follow [2] and write the needed expression on
the streched horizon for the excited string

⌘R = lim
!R!0

AR

2!R

Z 1

0
d⌧ei!R⌧R23,23(⌧) (87)

with AR the area of the black-hole and ⌧ a di-
mensionless Rindler time. The retarded com-
mutator of the normal ordered transverse stress
tensor for the Polyakov string on the Rindler
horizon reads

R23,23(⌧) =
⌦⇥

T 23
? (⌧), T 23

? (0)
⇤↵

(88)

with

T 23
? (⌧) =

1
2AR

X

n 6=0

: a2
na3

n : e�2in⌧ (89)

and the canonical rules
⇥
ai

m, aj
n

⇤
= m�m+n,0�ij .

The averaging in (88) is carried using the black-
body spectrum as in (84). The result is

⌘R = lim
!R!0

AR

2!R

⇡

2A2
R

(!R/2)2

e�R!R/2 � 1
=

1
AR

⇡

8�R

(90)
We note the occurence of the Bekenstein-
Hawking or Rindler temperature �BH = �R in
the thermal factor.

Combining (86) for the entropy to (90) yields
the viscosity on the streched horizon

⌘R

SR/AR
=

1
4⇡

✓
3

D?

◆
⌘ 1

4⇡
(91)

which, for D? = 3, is precisely the celebrated
universal value from AdS/CFT. The result (91)
is remarkable as it follows solely from a string
moving at large “time” � in non-critical dimen-
sions but near its Rindler horizon, not in trans-
verse coordinate z. It emerges naturally in the
near-Hagedorn regime.

The result (91) for the critical pomeron as a
close string exchange on the streched horizon
for large 1/�R is to be contrasted to the same
viscosity ratio but for the low-T pomeron as a

Kubo



summary 
micro=>macro

• at very high energy the strings of the Pomeron 
gets longer and effectively hotter

• as its T approach Haderon temperature, a string 
ball regime appears => high S,E but not p

• as T grows too close to T(Hagedorn), string ball 
saturates the space and transition to sQGP 
happens. => p grows =>hydro explosion
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• history before LHC

• 4 papers from LHC experiments

• two small parameters of hydro 

• the radial flow, gradients and viscosity 

• higher harmonics, sound damping

• higher harmonics for pp and pA

• higher gradients and LS resummation

Macro to micro: Outline
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LHC era begins

 high multiplicity trigger in pp  reveals a ``ridge” 
which is also there in pPb  

4 5 Results

|h| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts are examined by loosening or tightening the track selections on dz/s(dz)
and dxy/s(dxy) from 2 to 5. The associated yields are found to be insensitive to these track
selections within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <
35) and (b) for a high-multiplicity selection (Noffline

trk � 110). The sharp near-side peaks from jet
correlations have been truncated to better illustrate the structure outside that region.

5 Results

Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (Dh, Df) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at Df ⇡ p for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at Df ⇡ 0 extending to |Dh| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of p0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

To investigate the long-range, near-side correlations in finer detail, and to provide a quanti-
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servations are qualitatively similar to those in pp collisions when selecting the same
observed particle multiplicity, while the overall strength of the correlations is signifi-
cantly larger in pPb collisions.
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well described by 
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like HIJING

• Ridge is a peak at 
the same azimuth,  
seen at highest 
multiplicity only and 
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• it is stronger in pA 
than at pp, yet the 
same multiplicity is 
needed
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Figure 2: Correlated yield obtained from the ZYAM procedure as a function of |Df| averaged
over 2 < |Dh| < 4 in different pT and multiplicity bins for 5.02 TeV pPb data (solid circles) and
7 TeV pp data (open circles). The pT selection applies to both particles in each pair. Statistical
uncertainties are smaller than the marker size. The subtracted ZYAM constant is listed in each
panel. Also shown are pPb predictions for HIJING [24] (dashed curves) and a hydrodynamic
model [25] (solid curves shown for 1 < pT < 2 GeV/c).
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Abstract

Angular correlations between charged trigger and associated particles are measured by the
ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV
for transverse momentum ranges within 0.5< pT,assoc < pT,trig < 4 GeV/c. The correlations
are measured over two units of pseudorapidity and full azimuthal angle in different intervals
of event multiplicity, and expressed as associated yield per trigger particle. Two long-range
ridge-like structures, one on the near side and one on the away side, are observed when
the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-
multiplicity events. The excess on the near-side is qualitatively similar to that recently
reported by the CMS collaboration, while the excess on the away-side is reported for the
first time. The two-ridge structure projected onto azimuthal angle is quantified with the sec-
ond and third Fourier coefficients as well as by near-side and away-side yields and widths.
The yields on the near side and on the away side are equal within the uncertainties for all
studied event multiplicity and pT bins, and the widths show no significant evolution with
event multiplicity or pT. These findings suggest that the near-side ridge is accompanied by
an essentially identical away-side ridge.

⇤See Appendix A for the list of collaboration members
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Fig. 3: Left: Associated yield per trigger particle in Dj and Dh for pairs of charged particles with
2 < pT,trig < 4 GeV/c and 1 < pT,assoc < 2 GeV/c in p–Pb collisions at

p
sNN = 5.02 TeV for the 0–20%

multiplicity class, after subtraction of the associated yield obtained in the 60–100% event class. Top
right: the associated per-trigger yield after subtraction (as shown on the left) projected onto Dh averaged
over |Dj| < p/3 (black circles), |Dj �p| < p/3 (red squares), and the remaining area (blue triangles,
Dj < �p/3, p/3 < Dj < 2p/3 and Dj > 4p/3). Bottom right: as above but projected onto Dj av-
eraged over 0.8 < |Dh | < 1.8 on the near side and |Dh | < 1.8 on the away side. Superimposed are fits
containing a cos(2Dj) shape alone (black dashed line) and a combination of cos(2Dj) and cos(3Dj)
shapes (red solid line). The blue horizontal line shows the baseline obtained from the latter fit which
is used for the yield calculation. Also shown for comparison is the subtracted associated yield when
the same procedure is applied on HIJING shifted to the same baseline. The figure shows only statisti-
cal uncertainties. Systematic uncertainties are mostly correlated and affect the baseline. Uncorrelated
uncertainties are less than 1%.

|Dh |< 1.2; b) the residual near-side peak above the ridge is also subtracted from the away side
by mirroring it at Dj = p/2 accounting for the general pT-dependent difference of near-side
and away-side jet yields due to the kinematic constraints and the detector acceptance, which is
evaluated using the lowest multiplicity class; and c) the lower multiplicity class is scaled before
the subtraction such that no residual near-side peak above the ridge remains. The resulting
differences in v2 (up to 15%) and v3 coefficients (up to 40%) when applying these approaches
have been added to the systematic uncertainties.

The coefficients v2 and v3 are shown in the left panel of Fig. 4 for different event classes. The
coefficient v2 increases with increasing pT, and shows only a small dependence on multiplicity.
In the 0–20% event class, v2 increases from 0.06±0.01 for 0.5 < pT < 1 GeV/c to 0.12±0.02
for 2 < pT < 4 GeV/c, while v3 is about 0.03 and shows, within large errors, an increasing trend
with pT. Reference [33] gives predictions for two-particle correlations arising from collective
flow in p–Pb collisions at the LHC in the framework of a hydrodynamical model. The values
for v2 and v3 coefficients, as well as the pT and the multiplicity dependences, are in qualitative
agreement with the presented results.
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Fig. 3: Left: Associated yield per trigger particle in Dj and Dh for pairs of charged particles with
2 < pT,trig < 4 GeV/c and 1 < pT,assoc < 2 GeV/c in p–Pb collisions at

p
sNN = 5.02 TeV for the 0–20%

multiplicity class, after subtraction of the associated yield obtained in the 60–100% event class. Top
right: the associated per-trigger yield after subtraction (as shown on the left) projected onto Dh averaged
over |Dj| < p/3 (black circles), |Dj �p| < p/3 (red squares), and the remaining area (blue triangles,
Dj < �p/3, p/3 < Dj < 2p/3 and Dj > 4p/3). Bottom right: as above but projected onto Dj av-
eraged over 0.8 < |Dh | < 1.8 on the near side and |Dh | < 1.8 on the away side. Superimposed are fits
containing a cos(2Dj) shape alone (black dashed line) and a combination of cos(2Dj) and cos(3Dj)
shapes (red solid line). The blue horizontal line shows the baseline obtained from the latter fit which
is used for the yield calculation. Also shown for comparison is the subtracted associated yield when
the same procedure is applied on HIJING shifted to the same baseline. The figure shows only statisti-
cal uncertainties. Systematic uncertainties are mostly correlated and affect the baseline. Uncorrelated
uncertainties are less than 1%.

|Dh |< 1.2; b) the residual near-side peak above the ridge is also subtracted from the away side
by mirroring it at Dj = p/2 accounting for the general pT-dependent difference of near-side
and away-side jet yields due to the kinematic constraints and the detector acceptance, which is
evaluated using the lowest multiplicity class; and c) the lower multiplicity class is scaled before
the subtraction such that no residual near-side peak above the ridge remains. The resulting
differences in v2 (up to 15%) and v3 coefficients (up to 40%) when applying these approaches
have been added to the systematic uncertainties.

The coefficients v2 and v3 are shown in the left panel of Fig. 4 for different event classes. The
coefficient v2 increases with increasing pT, and shows only a small dependence on multiplicity.
In the 0–20% event class, v2 increases from 0.06±0.01 for 0.5 < pT < 1 GeV/c to 0.12±0.02
for 2 < pT < 4 GeV/c, while v3 is about 0.03 and shows, within large errors, an increasing trend
with pT. Reference [33] gives predictions for two-particle correlations arising from collective
flow in p–Pb collisions at the LHC in the framework of a hydrodynamical model. The values
for v2 and v3 coefficients, as well as the pT and the multiplicity dependences, are in qualitative
agreement with the presented results.
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Fig. 4: Left: v2 (black closed symbols) and v3 (red open symbols) for different multiplicity classes
and overlapping pT,assoc and pT,trig intervals. Right: Near-side (black closed symbols) and away-side
(red open symbols) ridge yields per unit of Dh for different pT,trig and pT,assoc bins as a function of the
multiplicity class. The error bars show statistical and systematic uncertainties added in quadrature. In
both panels the points are slightly displaced horizontally for visibility.

To extract information on the yields and widths of the excess distributions in Fig. 3 (bottom
right), a constant baseline assuming zero yield at the minimum of the fit function (Eq. 2) is sub-
tracted. The remaining yield is integrated on the near side and on the away side. Alternatively,
a baseline evaluated from the minimum of a parabolic function fitted within |Dj �p/2|< 1 is
used; the difference on the extracted yields is added to the systematic uncertainties. The uncer-
tainty imposed by the residual near-side jet peak on the yield is evaluated in the same way as
for the vn coefficients. The near-side and away-side ridge yields are shown in the right panel of
Fig. 4 for different event classes and for different combinations of pT,trig and pT,assoc intervals.
The near-side and away-side yields range from 0 to 0.08 per unit of Dh depending on multiplic-
ity class and pT interval. It is remarkable that the near-side and away-side yields always agree
within uncertainties for a given sample despite the fact that the absolute values change substan-
tially with event class and pT interval. Such a tight correlation between the yields is non-trivial
and suggests a common underlying physical origin for the near-side and the away-side ridges.

From the baseline-subtracted per-trigger yields the square root of the variance, s , within |Dj|<
p/2 and p/2 < Dj < 3p/2 for the near-side and away-side region, respectively, is calculated.
The extracted widths on the near side and the away side agree with each other within 20%
and vary between 0.5 and 0.7. There is no significant pT dependence, which suggests that the
observed ridge is not of jet origin.

The analysis has been repeated using the forward ZNA detector instead of the VZERO for the
definition of the event classes. Unlike in nucleus–nucleus collisions, the correlation between
forward energy measured in the ZNA and particle density at central rapidities is very weak
in proton–nucleus collisions. Therefore, event classes defined as fixed fractions of the sig-
nal distribution in the ZNA select different events, with different mean particle multiplicity at
midrapidity, than the samples selected with the same fractions in the VZERO detector. While
the event classes selected with the ZNA span a much smaller range in central multiplicity den-
sity, they also minimize any autocorrelation between multiplicity selections and, for example,
jet activity. With the ZNA selection, we find qualitatively consistent results compared to the
VZERO selection. In particular, an excess in the difference between low-multiplicity and high-
multiplicity ZNA selected events is observed to be symmetric on the near side and away side.
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ond and third Fourier coefficients as well as by near-side and away-side yields and widths.
The yields on the near side and on the away side are equal within the uncertainties for all
studied event multiplicity and pT bins, and the widths show no significant evolution with
event multiplicity or pT. These findings suggest that the near-side ridge is accompanied by
an essentially identical away-side ridge.
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Fig. 3: Left: Associated yield per trigger particle in Dj and Dh for pairs of charged particles with
2 < pT,trig < 4 GeV/c and 1 < pT,assoc < 2 GeV/c in p–Pb collisions at

p
sNN = 5.02 TeV for the 0–20%

multiplicity class, after subtraction of the associated yield obtained in the 60–100% event class. Top
right: the associated per-trigger yield after subtraction (as shown on the left) projected onto Dh averaged
over |Dj| < p/3 (black circles), |Dj �p| < p/3 (red squares), and the remaining area (blue triangles,
Dj < �p/3, p/3 < Dj < 2p/3 and Dj > 4p/3). Bottom right: as above but projected onto Dj av-
eraged over 0.8 < |Dh | < 1.8 on the near side and |Dh | < 1.8 on the away side. Superimposed are fits
containing a cos(2Dj) shape alone (black dashed line) and a combination of cos(2Dj) and cos(3Dj)
shapes (red solid line). The blue horizontal line shows the baseline obtained from the latter fit which
is used for the yield calculation. Also shown for comparison is the subtracted associated yield when
the same procedure is applied on HIJING shifted to the same baseline. The figure shows only statisti-
cal uncertainties. Systematic uncertainties are mostly correlated and affect the baseline. Uncorrelated
uncertainties are less than 1%.

|Dh |< 1.2; b) the residual near-side peak above the ridge is also subtracted from the away side
by mirroring it at Dj = p/2 accounting for the general pT-dependent difference of near-side
and away-side jet yields due to the kinematic constraints and the detector acceptance, which is
evaluated using the lowest multiplicity class; and c) the lower multiplicity class is scaled before
the subtraction such that no residual near-side peak above the ridge remains. The resulting
differences in v2 (up to 15%) and v3 coefficients (up to 40%) when applying these approaches
have been added to the systematic uncertainties.

The coefficients v2 and v3 are shown in the left panel of Fig. 4 for different event classes. The
coefficient v2 increases with increasing pT, and shows only a small dependence on multiplicity.
In the 0–20% event class, v2 increases from 0.06±0.01 for 0.5 < pT < 1 GeV/c to 0.12±0.02
for 2 < pT < 4 GeV/c, while v3 is about 0.03 and shows, within large errors, an increasing trend
with pT. Reference [33] gives predictions for two-particle correlations arising from collective
flow in p–Pb collisions at the LHC in the framework of a hydrodynamical model. The values
for v2 and v3 coefficients, as well as the pT and the multiplicity dependences, are in qualitative
agreement with the presented results.
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multiplicity class. The error bars show statistical and systematic uncertainties added in quadrature. In
both panels the points are slightly displaced horizontally for visibility.

To extract information on the yields and widths of the excess distributions in Fig. 3 (bottom
right), a constant baseline assuming zero yield at the minimum of the fit function (Eq. 2) is sub-
tracted. The remaining yield is integrated on the near side and on the away side. Alternatively,
a baseline evaluated from the minimum of a parabolic function fitted within |Dj �p/2|< 1 is
used; the difference on the extracted yields is added to the systematic uncertainties. The uncer-
tainty imposed by the residual near-side jet peak on the yield is evaluated in the same way as
for the vn coefficients. The near-side and away-side ridge yields are shown in the right panel of
Fig. 4 for different event classes and for different combinations of pT,trig and pT,assoc intervals.
The near-side and away-side yields range from 0 to 0.08 per unit of Dh depending on multiplic-
ity class and pT interval. It is remarkable that the near-side and away-side yields always agree
within uncertainties for a given sample despite the fact that the absolute values change substan-
tially with event class and pT interval. Such a tight correlation between the yields is non-trivial
and suggests a common underlying physical origin for the near-side and the away-side ridges.

From the baseline-subtracted per-trigger yields the square root of the variance, s , within |Dj|<
p/2 and p/2 < Dj < 3p/2 for the near-side and away-side region, respectively, is calculated.
The extracted widths on the near side and the away side agree with each other within 20%
and vary between 0.5 and 0.7. There is no significant pT dependence, which suggests that the
observed ridge is not of jet origin.

The analysis has been repeated using the forward ZNA detector instead of the VZERO for the
definition of the event classes. Unlike in nucleus–nucleus collisions, the correlation between
forward energy measured in the ZNA and particle density at central rapidities is very weak
in proton–nucleus collisions. Therefore, event classes defined as fixed fractions of the sig-
nal distribution in the ZNA select different events, with different mean particle multiplicity at
midrapidity, than the samples selected with the same fractions in the VZERO detector. While
the event classes selected with the ZNA span a much smaller range in central multiplicity den-
sity, they also minimize any autocorrelation between multiplicity selections and, for example,
jet activity. With the ZNA selection, we find qualitatively consistent results compared to the
VZERO selection. In particular, an excess in the difference between low-multiplicity and high-
multiplicity ZNA selected events is observed to be symmetric on the near side and away side.
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performed using approximately 1 µb−1 of data as a function of pT and the transverse energy (ΣEPb

T )
summed over 3.1 < η < 4.9 in the direction of the Pb beam. The correlation function, constructed
from charged particles, exhibits a long-range (2 < |∆η| < 5) near-side (∆φ ∼ 0) correlation that grows
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T . A long-range away-side (∆φ ∼ π) correlation, obtained by subtracting
the expected contributions from recoiling dijets and other sources estimated using events with small
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T , is found to match the near-side correlation in magnitude, shape (in ∆η and ∆φ) and ΣEPb

T

dependence. The resultant ∆φ correlation is approximately symmetric about π/2, and is consistent
with a cos 2∆φ modulation for all ΣEPb

T ranges and particle pT. The amplitude of this modulation is
comparable in magnitude and pT dependence to similar modulations observed in heavy-ion collisions,
suggestive of final-state collective effects in high multiplicity events.
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together with functions a0 + 2a2 cos 2∆φ obtained via a
Fourier decomposition (see text). The values for the ZYAM-
determined pedestal levels are indicated on each panel for
peripheral (bP

ZYAM
) and central (bC

ZYAM
) ΣEPb

T bins.

to the dominant contribution of the recoil component.
A similar dependence is observed for long-range corre-
lations in Pb+Pb collisions at approximately the same
pT [22, 23].
The relative amplitude of the cos 2∆φ modulation of

∆Y (∆φ), c2, can be estimated using a0, a2, and the ex-
tracted value of b

ZYAM
for central events:

c2 ≡ a2/(b
C
ZYAM

+ a0). (3)

Figure 4(e) shows c2 as a function of paT for 0.5 < pbT <
4 GeV. It exhibits a behavior similar to ∆Y (∆φ) at the
near-side and away-side. Using the techniques discussed
in Ref. [23], c2 can be converted into an estimate of s2,
the average second Fourier coefficient of the event-by-
event single-particle φ distribution, by assuming the fac-
torization relation c2(paT, p

b
T) = s2(paT)s2(p

b
T). From this,

s2(paT) is calculated as s2(paT) ≡ c2(paT, p
b
T)/

√

c2(pbT, p
b
T),

where c2(pbT, p
b
T) = (5.4 ± 0.1) × 10−3 is obtained from

Eq. (3) using the a2 extracted from the difference be-
tween the central and peripheral data shown in Fig. 2(c).
The s2(paT) values obtained this way exceed 0.1 at pT ∼
3 GeV, as given by the vertical axis on the right side
of Fig. 4(e). The factorization relation used to compute
s2(paT) is found to be valid within 10%–20% when se-
lecting different sub-ranges of pbT within 0.5–4 GeV. The

in
t

Y

0

0.2

0.4

 

ATLAS p+Pb
-1bµ 1 ≈ L ∫=5.02 TeV, NNs

 < 4 GeVb
T

0.5 < p
| < 5ηΔ2 < |

(a)/3π|<φΔ|

0

0.5

1

1.5

 

 > 80 GeVPb
TEΣ

 < 20 GeVPb
TEΣ

Difference

(b)/3π|>2φΔ|

 [GeV]a
T

p
0 2 4 6

in
t

Y
Δ

0

0.2

0.4

 

(c)/3π|<φΔ|

 [GeV]a
T

p
0 2 4 6

0

0.2

0.4

 

(d)/3π|>2φΔ|

 [GeV]a
T

p
0 2 4 6

)b T
,pa T

(p 2c

0

0.005

0.01

 

ATLAS -1bµ 1 ≈ L ∫=5.02 TeV, NNsp+Pb   
|<5ηΔ<4 GeV, 2<|b

T
 > 80 GeV, 0.5<pPb

TEΣ

(e)

)a T
(p 2s

0

0.05

0.1

FIG. 4. Integrated per-trigger yields, Yint, (see text) vs p
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T for

0.5 < pbT < 4 GeV in peripheral and central events, on the
(a) near-side and (b) away-side. The panels (c) and (d) show
the difference, ∆Yint. Panel (e) shows the pT dependence of
c2 (left axis) and s2 (right axis). The right axis of (e) differs
from the left only by a multiplicative factor 1/

√
5.4× 10−3

(see text). The error bars and shaded boxes represent the
statistical and systematic uncertainties, respectively.

analysis is also repeated for correlation functions sep-
arately constructed from like-sign pairs and unlike-sign
pairs, and the resulting c2 and s2 coefficients are found
to be consistent within their statistical and systematic
uncertainties.

In summary, ATLAS has measured two-particle corre-
lation functions in

√
sNN = 5.02 TeV p+Pb collisions in

different intervals of ΣEPb

T over 2 < |∆η| < 5. An away-
side contribution is observed that grows rapidly with in-
creasingΣEPb

T and which matches many essential features
of the near-side ridge observed here, as well as in previ-
ous high-multiplicity p+ p, p+Pb and Pb+Pb data at
the LHC. Thus, while the ridge in p+ p and p+Pb colli-
sions has been characterized as a near-side phenomenon,
these results show that it has both near-side and away-
side components that are symmetric around ∆φ ∼ π/2,
with a ∆φ dependence that is approximately described
by a cos 2∆φ modulation. A Fourier decomposition of
the correlation function, C(∆φ), yields a pair cos 2∆φ
amplitude of about 0.01 at pT ∼ 3 GeV, corresponding
to a single-particle amplitude of about 0.1.

Some of the features of the data, including the presence
of an away-side component, are qualitatively predicted in
the Color Glass Condensate approach [6] which models
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from charged particles, exhibits a long-range (2 < |∆η| < 5) near-side (∆φ ∼ 0) correlation that grows
rapidly with increasing ΣEPb

T . A long-range away-side (∆φ ∼ π) correlation, obtained by subtracting
the expected contributions from recoiling dijets and other sources estimated using events with small
ΣEPb

T , is found to match the near-side correlation in magnitude, shape (in ∆η and ∆φ) and ΣEPb

T

dependence. The resultant ∆φ correlation is approximately symmetric about π/2, and is consistent
with a cos 2∆φ modulation for all ΣEPb

T ranges and particle pT. The amplitude of this modulation is
comparable in magnitude and pT dependence to similar modulations observed in heavy-ion collisions,
suggestive of final-state collective effects in high multiplicity events.
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to the dominant contribution of the recoil component.
A similar dependence is observed for long-range corre-
lations in Pb+Pb collisions at approximately the same
pT [22, 23].
The relative amplitude of the cos 2∆φ modulation of

∆Y (∆φ), c2, can be estimated using a0, a2, and the ex-
tracted value of b

ZYAM
for central events:

c2 ≡ a2/(b
C
ZYAM

+ a0). (3)

Figure 4(e) shows c2 as a function of paT for 0.5 < pbT <
4 GeV. It exhibits a behavior similar to ∆Y (∆φ) at the
near-side and away-side. Using the techniques discussed
in Ref. [23], c2 can be converted into an estimate of s2,
the average second Fourier coefficient of the event-by-
event single-particle φ distribution, by assuming the fac-
torization relation c2(paT, p
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T). From this,
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T)/
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where c2(pbT, p
b
T) = (5.4 ± 0.1) × 10−3 is obtained from

Eq. (3) using the a2 extracted from the difference be-
tween the central and peripheral data shown in Fig. 2(c).
The s2(paT) values obtained this way exceed 0.1 at pT ∼
3 GeV, as given by the vertical axis on the right side
of Fig. 4(e). The factorization relation used to compute
s2(paT) is found to be valid within 10%–20% when se-
lecting different sub-ranges of pbT within 0.5–4 GeV. The
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analysis is also repeated for correlation functions sep-
arately constructed from like-sign pairs and unlike-sign
pairs, and the resulting c2 and s2 coefficients are found
to be consistent within their statistical and systematic
uncertainties.

In summary, ATLAS has measured two-particle corre-
lation functions in

√
sNN = 5.02 TeV p+Pb collisions in

different intervals of ΣEPb

T over 2 < |∆η| < 5. An away-
side contribution is observed that grows rapidly with in-
creasingΣEPb

T and which matches many essential features
of the near-side ridge observed here, as well as in previ-
ous high-multiplicity p+ p, p+Pb and Pb+Pb data at
the LHC. Thus, while the ridge in p+ p and p+Pb colli-
sions has been characterized as a near-side phenomenon,
these results show that it has both near-side and away-
side components that are symmetric around ∆φ ∼ π/2,
with a ∆φ dependence that is approximately described
by a cos 2∆φ modulation. A Fourier decomposition of
the correlation function, C(∆φ), yields a pair cos 2∆φ
amplitude of about 0.01 at pT ∼ 3 GeV, corresponding
to a single-particle amplitude of about 0.1.

Some of the features of the data, including the presence
of an away-side component, are qualitatively predicted in
the Color Glass Condensate approach [6] which models
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to high pt
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lar harmonics [8, 9]. (This is unlike the central
AA data, in which the strongest harmonics is
the third n = 3.)

A number of authors described this phe-
nomenon hydrodynamically. For the pA case,
one may mention e.g. [11], who start from
Glauber-inspired initial conditions similarly to
what is done in the AA case. Indeed, one pro-
ton propagating through the diameter of the
Pb nucleus “wounds” 10-20 nucleons. Those
are placed in certain random pattern in the
transverse plane, providing some estimates of
the higher angular harmonics ✏n from which hy-
drodynamical perturbations may start. The re-
sults are qualitatively consistent with the LHC
data.

The objective of this paper is to extend such
studies, using instead of a complicated “real-
istic models” with huge number of details and
heavy numerics (the “event-by-event” hydrody-
namics) an analytic approach. As we will see,
this will allow us to focus on generic depen-
dences of the predictions on the parameters of
the problem.

C. Hydrodynamics

Before going to details, let us express the
main ideas and tools we have in mind in general
terms. Since we will be discussing the valid-
ity of hydrodynamics, it is important to specify
from the onset which hydrodynamics we will
use.

The simplest are the equation of ideal hydro-
dynamics

@µTµ⌫ = 0 (1)

containing the stress tensor in local approxima-
tion (no derivatives). Thus the only deriva-
tives appear linearly and therefore simultane-
ous rescaling of the size and the evolution time
xµ ! �xµ does not change the equation. So,
ideal hydrodynamics will produce the same so-
lution for fireball of any size, provided other
parameters are unchanged. And indeed, such
scaling was, for example, seen experimentally,
e.g. for AuAu and CuCu collisions at RHIC.
However, this works only if in both cases all
viscous corrections are negligible.

At the very least, this requires as one applica-
bility condition that the system’s size R is much

larger than some microscopic scales such as the
inverse temperature T�1. The corresponding
ratio will be one small parameter which will
subsequently change

O(1) ⇡ 1
TRpp,high mutiplicity

(2)

>
1

TRcentral pA
>

1
TRcentral AA

⇡ O(1/10)

Another important small parameter which we
seem to have for strongly coupled Quark-Gluon
Plasma (sQGP) is the viscosity-to-entropy-

density ratio

⌘

s
⇡ O(1/10)⌧ 1 (3)

Roughly speaking, it tells us that viscous ef-
fects – or the mean free path – is additionally
suppressed compared to the micro scale 1/T .
The smallness of this second parameter sug-
gests that one can hope to apply hydrodynam-
ics even for systems as small as pp collisions, for
which the former parameter is no longer small.

Hydrodynamical e↵ects can be further sep-
arated into an overall explosion – called the
radial flow, and higher angular harmonics of
flow. The former is expected to be enhanced
by larger gradients, while the latters get more
suppressed by viscosity e↵ects. Finally, one can
discuss the applicability of hydrodynamics as a
function of the particle transverse momentum
vn(pt).

We will show below that while in central
AA we see about 6 angular harmonics, in pA
only the second one remains relatively weakly
damped by viscosity, while in the pp case even
the second one is rather strongly damped. We
still expect the radial flow (zeroth harmonics)
to be enhanced, as the bulk viscosity is not sup-
posed to be large enough in this case.

Furthermore, we will argue that the high
multiplicity events in pp should be attributed to
a QCD string going near-critical, with T ! TH .
If so, the transverse size Rpp

? is of a sub-nucleon
scale and is related to the significantly smaller
QCD string scale

p
↵0 ⇡ (2 GeV )�1 ⇡ 0.1 fm (4)
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High Multiplicity pp and pA Collisions is a place where the macroscopic description (thermo and
hydrodynamics) meets with the microscopic one (pomerons and QCD strings). In the first part
of the paper we study what happens with the hydrodynamical predictions as the system size gets
smaller and smaller. For simplicity, we don’t do it numerically, but analytically using Gubser0 s
flow. We found that the radial flow is expected to increase, while the elliptic flow decreases, and
high harmonics become perhaps too small to be observed. In the second part of the paper we
approach the problem from the opposite side, using a string-based Pomeron model. We found that
as the intrinsic temperature of the string grows, it approaches the Hagedorn regime and produces
a high entropy string ball, amusingly dual to a certain black hole. Furthermore, when the string
temperature narrows on the Hagedorn temperature or T/TH�1 = O(1/Nc), the stringy ball becomes
a sQGP ball with non-negligible pressure and hydrodynamical flow.

I. INTRODUCTION

A. The outline

High energy heavy ion collisions are theo-
retically treated very di↵erently from pp and
pA ones. While the former are very well de-
scribed using macroscopic theories – thermo-
dynamics and relativistic hydrodynamics – the
latter are subject to what we would like to call
the “pomeron physics”, described with a help
of microscopic dynamics in terms of (ladders
of) perturbative gluons, classical random gauge
fields, or strings. The temperature and entropy
play a central role in the former case, and are
not even mentioned or defined in the latter case.

The subject of this paper is the situation
when these two distinct worlds (perhaps) meet.
In short, the main statement of this paper
is that specially triggered fluctuations of the
pp and pA collisions of particular magnitude
should be able to reach conditions in which the
macroscopic description will also become pos-
sible. While triggered by experimental hints at
LHC to be discussed below, this phenomenon
has not yet been a subject of a systematic study
experimentally or theoretically, and is of course
far from being understood. Needless to say, the
problem touches on a number of key issues, we
now enumerate and then address. From the

macroscopic side, they are:

• What is the smallest system size which
still undergoes a hydrodynamical explo-
sion?

• How do all hydrodynamical observables
scale with the system size R and viscosity-
to-entropy ratio ⌘/s, for such systems? In
particular, how large are the viscous cor-
rections for radial and elliptic flows?

• How do amplitudes of higher angular har-
monics vn scale with n,R and ⌘/s? In
which pt region do we expect hydrody-
namics to work, and for each vn?

• Do high multiplicity pp and pA collisions
in which the (double) “ridge” has been re-
cently observed at LHC [7–9] fit into such
a hydrodynamical scaling?

From the microscopic side we will use a
stringy description of the pomeron at strong
coupling in the context of holographic QCD
with a confining wall. Specifically, we will use
the recent model developed by Sto↵ers and Za-
hed [1, 2] where both the issue of a coherent
scattering amplitude and entropy production
can be adressed simultaneously. The issues we
will address in this model are:
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the “pomeron physics”, described with a help
of microscopic dynamics in terms of (ladders
of) perturbative gluons, classical random gauge
fields, or strings. The temperature and entropy
play a central role in the former case, and are
not even mentioned or defined in the latter case.

The subject of this paper is the situation
when these two distinct worlds (perhaps) meet.
In short, the main statement of this paper
is that specially triggered fluctuations of the
pp and pA collisions of particular magnitude
should be able to reach conditions in which the
macroscopic description will also become pos-
sible. While triggered by experimental hints at
LHC to be discussed below, this phenomenon
has not yet been a subject of a systematic study
experimentally or theoretically, and is of course
far from being understood. Needless to say, the
problem touches on a number of key issues, we
now enumerate and then address. From the

macroscopic side, they are:

• What is the smallest system size which
still undergoes a hydrodynamical explo-
sion?

• How do all hydrodynamical observables
scale with the system size R and viscosity-
to-entropy ratio ⌘/s, for such systems? In
particular, how large are the viscous cor-
rections for radial and elliptic flows?

• How do amplitudes of higher angular har-
monics vn scale with n,R and ⌘/s? In
which pt region do we expect hydrody-
namics to work, and for each vn?

• Do high multiplicity pp and pA collisions
in which the (double) “ridge” has been re-
cently observed at LHC [7–9] fit into such
a hydrodynamical scaling?

From the microscopic side we will use a
stringy description of the pomeron at strong
coupling in the context of holographic QCD
with a confining wall. Specifically, we will use
the recent model developed by Sto↵ers and Za-
hed [1, 2] where both the issue of a coherent
scattering amplitude and entropy production
can be adressed simultaneously. The issues we
will address in this model are:

two small parameters
 of hydro
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FIG. 1: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); the near-critical string
case � ! �H (b).

II. HYDRODYNAMICS AT ITS EDGE:
STUDIES IN THE NAVIER-STOKES

APPROXIMATION

A. Ideal radial flow using Gubser’s
solution

Many groups have studied heavy ion colli-
sions by solving hydrodynamical equations nu-
merically. However, it is not really necessary
for the current purposes since there exist a rel-
atively simple analytic solution found by Gub-
ser [18], see also [19]. In this section we will
apply this solution and compare the AA hydro-
dynamics with pA and pp ones.

Gubser flow is a solution which keeps the
boost-invariance and the axial symmetry in the
transverse plane. It is obtained via symmetry
under special conformal transformation, and
therefore, the matter is required to be confor-
mal, with the EOS

✏ = 3p = T 4f⇤ (7)

where the parameter f⇤ = 11 is fitted to repro-
duce the lattice data on QGP thermodynamics.

The coordinates used are either the usual
proper time -spatial rapidity - transverse radius
- azimuthal angle set (⌧̄ , ⌘, r̄,�) with the metric

ds2 = �d⌧̄2 + ⌧̄2d⌘2 + dr̄2 + r̄2d�2, (8)

or the comoving coordinates we will introduce a
bit later. The solution will depend only on the
dimensionful variables ⌧̄ , r̄. The bar disappears
because the solution has only one parameter q
with dimension of the inverse length, so one can
use rescaling to dimensionless variables

t = q⌧̄ , r = qr̄ (9)

Gubser’s solution of ideal relativistic hydro-
dynamics, for the transverse velocity and the
energy density reads

v?(t, r) =
2tr

1 + t2 + r2
(10)

✏

q4
=

✏̂028/3

t4/3 [1 + 2(t2 + r2) + (t2 � r2)2]4/3

where ✏̂0 is some normalization parameter.
The first task we perform is mapping the AA,

pA and pp collisions to these coordinates, which
is done via selection of the scale factors chosen
as

q�1
AA = 4.3, q�1

AA = 1, q�1
AA = 0.5 (fm) (11)

and the energy density parameter, which is re-
lated to the entropy-per-rapidity density of the
solution

✏̂0 = f
�1/3
⇤

✓
3

16⇡

dS

d⌘

◆4/3

(12)

As in the Bjorken scaling solution, the rapidity
interval is infinite and nothing depends on ⌘,
so the total entropy is infinite. Rapidity inde-
pendence is well satisfied in the LHC data we
discuss, in the observed rapidity interval. The
entropy density is directly related to observed
density of charged secondaries via a relation

dS

d⌘
⇡ 7.5

dNch

d⌘
(13)

defined at freezeout.
We use for central LHC AA=PbPb collisions

dNAA
ch /d⌘ = 1450 (14)

(Note that we ignore the di↵erence between
rapidity and pseudo rapidity.) The pp and
pA data are split into several multiplicity bins:
for definiteness, we will refer to one of them
in the CMS set, with the (corrected average)
multiplicity Nch = 114 inside |⌘| < 2.4 and
pt > 0.4 GeV acceptance. We thus take

dNpA
ch /d⌘ = dNpp

ch /d⌘ = 1.6
114

2 ⇤ 2.4
(15)

where the factor 1.6 approximately corrects for
the unobserved pt < 0.4 GeV region.

6

Now the energy parameters are also fixed,
and one can map the region in which hydro-
dynamics is supposed to work for all three col-
lision regimes. Such a map is shown on the t, r
plot in Fig.2. Hydrodynamics is assumed to be
valid between the (horizontal) initial time lines
and the contours of fixed freeze out tempera-
ture Tf . Note, that while the absolute sizes
and multiplicity in central AA are quite dif-
ferent from pA, in the dimensionless variables
those are closer to each other than in pp. The
reason is an assumed factor of 2 jump in the
radius.

Thus the cases get more and more “explo-
sive”, as the gradients progressively grow. The
spectra should be calculated by the standard
Cooper-Fry formula

dN

d⌘dp2
?
⇠

Z
pµd⌃µ exp

✓
�pµuµ

Tf

◆
(16)

in which ⌃µ is the freeze out surface, on which
the collective velocity uµ(t, r) should be taken,
for details see [23] . The transverse collective
velocity on the freeze out curve is read o↵ (10)
which is too simple to plot. We just mention
the maximal values reached at the “knee” of
the freeze-out curves. They are

vmax
? [AA, pA, pp] = [0.69, 0.83, 0.95] (17)

respectively. For large pt of the secondary a
region around this “knee” dominates the in-
tegral. The slopes of the spectra of the rela-
tivistic pion are simply blue-shifted. Spectra
of heavier particles – protons and antiprotons
especially – are modified di↵erently, leading to
a strong enhancement of the proton/pion ratio
at pt > 1 � 3 GeV . This e↵ect, the manifesta-
tion of the collective radial flow, was suggested
and searched for but not found in [4] using the
min.bias ISR pp data long ago. It works spec-
tacularly in AuAu collisions at RHIC and PbPb
collisions at LHC. The same e↵ect should be
looked at in the (triggered) high multiplicity
pA and pp events.

B. The viscosity e↵ect on the radial flow

Here we continue to discuss the radial flow
using Gubser’s solution [18], now adding the
viscosity e↵ect. The equation for the reduced

FIG. 2: (color online) The three horizontal lines
correspond to the initial time: from bottom up AA
(blue solid), pA (dash black) and pp (red dash-dot).
The corresponding three curves with the same color
are the lines at which the temperature reaches the
same freeze-out value, set to be Tf = 150 MeV .
The two thin solid lines correspond to the values
of the variable ⇢ = �2.2 (lower) and �0.2 (upper).
Those values are used as initial and final values in
the evolution of higher harmonics.

temperature T̂ = ✏̂1/4 using the combination of
variables

g =
1� t2 + r2

2t
(18)

becomes an ordinary di↵erential equation

3(1+g2)3/2 dT̂

dg
+2g

p
1 + g2T̂ +g2H0 = 0 (19)

where the last term contains a new prameter

H0 =
⌘

✏3/4
=

⌘

s

4
3
f

1/4
⇤ (20)

For ⌘/s = 0.134 we will use as representative
number H0 = 0.33.

The equation is solvable analytically in terns
of certain hypergeometric functions (see below)
or numerically. For AA collisions we find that
the role of the viscous corrections is truly neg-
ligible. The curves are the same within their
plotted width. (This is, of course, well known
from numerical studies in the literature during
the last several years.) For the pA and pp cases
one can see a di↵erence between ideal and vis-
cous , as we show in Figs. 3 through the re-
duced temperature dependence T = T̂ /t at cer-
tain positions. The viscous e↵ect is maximal
at early times, and then the viscous and ideal
curves meet. As expected, the viscous e↵ects
are very small at the fireball center r = 0, and
become much more noticeable at its edge, see
the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
laying the freezeout.

The main conclusion of this section is that
a “realistic” viscosity of the sQGP is so small,
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FIG. 1: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); the near-critical string
case � ! �H (b).

II. HYDRODYNAMICS AT ITS EDGE:
STUDIES IN THE NAVIER-STOKES

APPROXIMATION

A. Ideal radial flow using Gubser’s
solution

Many groups have studied heavy ion colli-
sions by solving hydrodynamical equations nu-
merically. However, it is not really necessary
for the current purposes since there exist a rel-
atively simple analytic solution found by Gub-
ser [18], see also [19]. In this section we will
apply this solution and compare the AA hydro-
dynamics with pA and pp ones.

Gubser flow is a solution which keeps the
boost-invariance and the axial symmetry in the
transverse plane. It is obtained via symmetry
under special conformal transformation, and
therefore, the matter is required to be confor-
mal, with the EOS

✏ = 3p = T 4f⇤ (7)

where the parameter f⇤ = 11 is fitted to repro-
duce the lattice data on QGP thermodynamics.

The coordinates used are either the usual
proper time -spatial rapidity - transverse radius
- azimuthal angle set (⌧̄ , ⌘, r̄,�) with the metric

ds2 = �d⌧̄2 + ⌧̄2d⌘2 + dr̄2 + r̄2d�2, (8)

or the comoving coordinates we will introduce a
bit later. The solution will depend only on the
dimensionful variables ⌧̄ , r̄. The bar disappears
because the solution has only one parameter q
with dimension of the inverse length, so one can
use rescaling to dimensionless variables

t = q⌧̄ , r = qr̄ (9)

Gubser’s solution of ideal relativistic hydro-
dynamics, for the transverse velocity and the
energy density reads

v?(t, r) =
2tr

1 + t2 + r2
(10)

✏

q4
=

✏̂028/3

t4/3 [1 + 2(t2 + r2) + (t2 � r2)2]4/3

where ✏̂0 is some normalization parameter.
The first task we perform is mapping the AA,

pA and pp collisions to these coordinates, which
is done via selection of the scale factors chosen
as

q�1
AA = 4.3, q�1

AA = 1, q�1
AA = 0.5 (fm) (11)

and the energy density parameter, which is re-
lated to the entropy-per-rapidity density of the
solution

✏̂0 = f
�1/3
⇤

✓
3

16⇡

dS

d⌘

◆4/3

(12)

As in the Bjorken scaling solution, the rapidity
interval is infinite and nothing depends on ⌘,
so the total entropy is infinite. Rapidity inde-
pendence is well satisfied in the LHC data we
discuss, in the observed rapidity interval. The
entropy density is directly related to observed
density of charged secondaries via a relation

dS

d⌘
⇡ 7.5

dNch

d⌘
(13)

defined at freezeout.
We use for central LHC AA=PbPb collisions

dNAA
ch /d⌘ = 1450 (14)

(Note that we ignore the di↵erence between
rapidity and pseudo rapidity.) The pp and
pA data are split into several multiplicity bins:
for definiteness, we will refer to one of them
in the CMS set, with the (corrected average)
multiplicity Nch = 114 inside |⌘| < 2.4 and
pt > 0.4 GeV acceptance. We thus take

dNpA
ch /d⌘ = dNpp

ch /d⌘ = 1.6
114

2 ⇤ 2.4
(15)

where the factor 1.6 approximately corrects for
the unobserved pt < 0.4 GeV region.
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FIG. 1: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); versus the near-critical
� ! �H (b).

II. HYDRODYNAMICS AT ITS EDGE:
STUDIES IN THE NAVIER-STOKES

APPROXIMATION

A. Ideal radial flow using Gubser’s
solution

Many groups study heavy ion collisions by
solving hydrodynamical equations numerically.
However, it is not really necessary for the cur-
rent purposes since there exist a relatively sim-
ple analytic solution found by Gubser [18], see
also [19]. In this section we will apply this so-
lution and to compare the AA hydrodynamics
with pA and pp ones.

Gubser flow is a solution which keeps the
boost-invariance and the axial symmetry in the
transverse plane. It is obtained via symmetry
under special conformal transformation, and
therefore, the matter is required to be confor-
mal, with the EOS

✏ = 3p = T 4f⇤ (7)

where parameter f⇤ = 11 is fitted to reproduce
the lattice data on QGP thermodynamics.

The coordinates used are either the usual
proper time -spatial rapidity - transverse radius
- azimuthal angle set (⌧̄ , ⌘, r̄,�) with the metric

ds2 = �d⌧̄2 + ⌧̄2d⌘2 + dr̄2 + r̄2d�2, (8)

or the comoving coordinates we will introduce a
bit later. The solution will depend only on the
dimensional variables ⌧̄ , r̄. The bar disappears
because the solution has only one parameter q
with dimension of the inverse length, so one can
use rescaling to dimensionless variables

t = q⌧̄ , r = qr̄ (9)

Gubser’s solution of the ideal relativistic hy-
drodynamics, for the transverse velocity and
the energy density reads

v?(t, r) =
2tr

1 + t2 + r2
(10)

✏

q4
=

✏̂028/3

t4/3 [1 + 2(t2 + r2) + (t2 � r2)2]4/3

where ✏̂0 is some normalization parameter.
The first task we perform is mapping

the AA, pA, pp collisions to these coordinates,
which is done via selection of the scale factors
chosen as

q�1
AA = 4.3, q�1

AA = 1, q�1
AA = 0.5 (fm) (11)

and the energy density parameter, which is re-
lated to the entropy-per-rapidity density of the
solution

✏̂0 = f
�1/3
⇤

✓
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16⇡

dS

d⌘

◆4/3

(12)

Remember that, like in the Bjorken scaling so-
lution, rapidity interval is infinite and nothing
depends on ⌘, so the total entropy is infinite.
Rapidity independence is well satisfied in the
LHC data we discuss, in the observed rapidity
interval. The entropy density is directly related
to observed density of charged secondaries via
a relation

dS

d⌘
⇡ 7.5

dNch

d⌘
(13)

defined at freezeout.
We use for central LHC AA=PbPb collisions

dNAA
ch /d⌘ = 1450 (14)

(Note that we ignore the di↵erence between
rapidity and pseudo rapidity.) The pp and
pA data are split into several multiplicity bins:
for definiteness, we will refer to one of them
in the CMS set, with the (corrected average)
multiplicity Nch = 114 inside |⌘| < 2.4 and
pt > 0.4 GeV acceptance. We thus take

dNpA
ch /d⌘ = dNpp

ch /d⌘ = 1.6
114

2 ⇤ 2.4
(15)

where the factor 1.6 approximately corrects for
unobserved pt < 0.4 GeV region.
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it is clear that this expression is way too strong dissipation: we need more realistic expressions, from 
Gubser, as large m asymptotics does not work
before that some basic stuff 
here the original fourth root of epsilon, in which overall factor is dropped and q=1 used for the units
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FIG. 4: (color online) Squared amplitude dissipa-
tion factor P 2

m (as it appears in 2-particle correla-
tors) for ⌘/s = .134 as a function of the azimuthal
harmonics m for AA (black) solid, pA (blue) dash
and pp (red) dash-dot.

The exponent contains the product of two small
factors, ⌘/s and 1/TR times the harmonics
number squared. For PbPb LHC collisions one
finds that

1
TR

= O(1/10) (24)

and a comparable ⌘/s. For the most central
bin – so that the elliptic flow does not obscure
genuine higher harmonics via nonlinear e↵ects
– one can immediately see from this expres-
sion why we observed harmonics for m = 1..6,
with m � 7 still in the statistical noise (see
e.g.comparison to hydro in [23]).

Proceeding to pp and pA collision (at LHC)
by keeping a similar initial temperature Ti ⇠
400 MeV ⇠ 1/(0.5 fm) but a smaller size R,
results in a macro-to-micro parameter that is
no longer small, or 1/TR ⇠ 0.5, 1, respectively.
For a usual liquid/gas, with ⌘/s > 1, there
would not be any small parameter left and one
would have to conclude that hydrodynamics is
inapplicable for such a small system. How-
ever, since the quark-gluon plasma is an ex-
ceptionally good liquid with a very small ⌘/s,
which would keep this damping under control

for m = 0, 1, 2, while harmonics with m � 3
would be hard to see.

D. Angular harmonics of Gubser flow

Unfortunately, the formulae we have used so
far are, strictly speaking, only true for asymp-
totically high harmonics, with m� 1. Since we
are actually interested in not so large m = 2, 3,
we may check how the viscous filter works using
a better approximation. For that, we return to
Gubser’s flow and consider its angular pertur-
bations. The latters have been considered in
the literature [19, 23].

In [19] Gubser and Yarom re-derived the ra-
dial solution by going into the co-moving frame
via a coordinate transformation from the ⌧, r to
a new set ⇢, ✓ given by:

sinh ⇢ = �1� ⌧2 + r2

2⌧
(25)

tan ✓ =
2r

1 + ⌧2 � r2
(26)

In the new coordinates the rescaled metric
reads:

dŝ2 = �d⇢2 + cosh2 ⇢
�
d✓2 + sin2 ✓d�2

�
+ d⌘2

and we will use ⇢ as the “new time” coordinate
and ✓ as a new “space” coordinate. In the new
coordinates the fluid is at rest, so the velocity
field has only nonzero u⇢. The temperature is
now dependent only on the new time ⇢. For
nonzero viscosity the solution is

T̂ =
T̂0

(cosh ⇢)2/3
+

H0 sinh3 ⇢

9(cosh ⇢)2/3

⇥ 2F1

✓
3
2
,
7
6
;
5
2
,� sinh2 ⇢

◆
(27)

with T̂ = ⌧f
1/4
⇤ T and f⇤ = ✏/T 4 = 11 as in

[18].
Small perturbations to Gubsers flow obey lin-

earized equations which have also been derived
in [19]. We start with the zero viscosity case,
so that the background temperature (now to be
called T0) will be given by just the first term in
(27). The perturbations over the previous so-
lution are defined by

T̂ = T̂0(1 + �) (28)
uµ = u0 µ + u1µ (29)
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The exponent contains the product of two small
factors, ⌘/s and 1/TR times the harmonics
number squared. For PbPb LHC collisions one
finds that

1
TR

= O(1/10) (24)

and a comparable ⌘/s. For the most central
bin – so that the elliptic flow does not obscure
genuine higher harmonics via nonlinear e↵ects
– one can immediately see from this expres-
sion why we observed harmonics for m = 1..6,
with m � 7 still in the statistical noise (see
e.g.comparison to hydro in [23]).

Proceeding to pp and pA collision (at LHC)
by keeping a similar initial temperature Ti ⇠
400 MeV ⇠ 1/(0.5 fm) but a smaller size R,
results in a macro-to-micro parameter that is
no longer small, or 1/TR ⇠ 0.5, 1, respectively.
For a usual liquid/gas, with ⌘/s > 1, there
would not be any small parameter left and one
would have to conclude that hydrodynamics is
inapplicable for such a small system. How-
ever, since the quark-gluon plasma is an ex-
ceptionally good liquid with a very small ⌘/s,
which would keep this damping under control

for m = 0, 1, 2, while harmonics with m � 3
would be hard to see.

D. Angular harmonics of Gubser flow

Unfortunately, the formulae we have used so
far are, strictly speaking, only true for asymp-
totically high harmonics, with m� 1. Since we
are actually interested in not so large m = 2, 3,
we may check how the viscous filter works using
a better approximation. For that, we return to
Gubser’s flow and consider its angular pertur-
bations. The latters have been considered in
the literature [19, 23].
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a new set ⇢, ✓ given by:

sinh ⇢ = �1� ⌧2 + r2

2⌧
(25)

tan ✓ =
2r

1 + ⌧2 � r2
(26)

In the new coordinates the rescaled metric
reads:

dŝ2 = �d⇢2 + cosh2 ⇢
�
d✓2 + sin2 ✓d�2

�
+ d⌘2

and we will use ⇢ as the “new time” coordinate
and ✓ as a new “space” coordinate. In the new
coordinates the fluid is at rest, so the velocity
field has only nonzero u⇢. The temperature is
now dependent only on the new time ⇢. For
nonzero viscosity the solution is

T̂ =
T̂0

(cosh ⇢)2/3
+

H0 sinh3 ⇢

9(cosh ⇢)2/3

⇥ 2F1

✓
3
2
,
7
6
;
5
2
,� sinh2 ⇢

◆
(27)

with T̂ = ⌧f
1/4
⇤ T and f⇤ = ✏/T 4 = 11 as in

[18].
Small perturbations to Gubsers flow obey lin-

earized equations which have also been derived
in [19]. We start with the zero viscosity case,
so that the background temperature (now to be
called T0) will be given by just the first term in
(27). The perturbations over the previous so-
lution are defined by

T̂ = T̂0(1 + �) (28)
uµ = u0 µ + u1µ (29)
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plotted width. (This is, of course, well known
from numerical studies in the literature during
the last several years.) For the pA and pp cases
one can see a di↵erence between ideal and vis-
cous , as we show in Figs. 3 through the re-
duced temperature dependence T = T̂ /t at cer-
tain positions. The viscous e↵ect is maximal
at early times, and then the viscous and ideal
curves meet. As expected, the viscous e↵ects
are very small at the fireball center r = 0, and
become much more noticeable at its edge, see
the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
laying the freezeout.

The main conclusion of this section is that
a “realistic” viscosity of the sQGP is so small,
that it provides a rather modest correction to
the radial flow, even for the pA and pp collisions
under consideration.

C. High angular harmonics

If the e↵ects of order l/R are not negligible,
they should be included. Keeping the first or-
der gradient of the velocities leads to the cel-
ebrated Navier-Stokes hydrodynamics. As one
includes the second order corrections, one get
other known approximations such as the Israel-
Stewart approximation. Recently, using the
AdS/CFT approach about a dozen of lowest or-
der coe�cients in the gradient expansion were
identified with alternating signs. An approxi-
mate PADE-like re-summation of these terms
was suggested by Lublinsky and Shuryak [20].
We will discuss the role of these higher order
gradient corrections in section III.

The e↵ects of viscosity are likely to damp
more the higher angular flow moments, as first
discussed by Staig and Shuryak [21] and recenty
applied to wast range of RHIC data [22] . The
“viscous filter” for the amplitude of a sound
perturbation with the wave vector k is

Pk =
�Tµ⌫(t, k)
�Tµ⌫(0, k)

= exp
✓
�2

3
⌘

s

k2t

T

◆
(21)

Since the scaling of the freeze out time is linear
in R or tf ⇡ 2R, and the wave vector k corre-
sponds to the fireball circumference which is m
times the wavelength, then
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for pp, the lower (black) ones for pA collisions. The
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2⇡R = m
2⇡

k
(22)

Inserting these values in (21) yields

Pm = exp

�m2 4

3

⇣⌘

s

⌘ ✓
1

TR

◆�
(23)

The radial flow in pA,pp
has moderate corrections!
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Now the energy parameters are also fixed,
and one can map the region in which hydro-
dynamics is supposed to work for all three col-
lision regimes. Such a map is shown on the t, r
plot in Fig.2. Hydrodynamics is assumed to be
valid between the (horizontal) initial time lines
and the contours of fixed freeze out tempera-
ture Tf . Note, that while the absolute sizes
and multiplicity in central AA is quite di↵erent
from pA, in the dimensionless variables those
are closer to each other than in pp. The reason
is assumed factor of 2 jump in the radius.

Thus the cases get more and more “explo-
sive”, as the gradients progressively grow. The
spectra should be calculated by the standard
Cooper-Fry formula

dN

d⌘dp2
?
⇠

Z
pµd⌃µ exp

✓
�pµuµ

Tf

◆
(16)

in which ⌃µ is the freeze out surface, on which
the collective velocity uµ(t, r) should be taken,
for details see [23] . The transverse collective
velocity on the freeze out curve is read o↵ (10)
which is too simple to plot: let us just mention
the maximal values reached at the “knee” of
the freeze-out curves: they are

vmax
? [AA, pA, pp] = [0.69, 0.83, 0.95] (17)

respectively. For large pt of the secondary a
region around this “knee” dominates the in-
tegral. The slopes of the spectra of the rela-
tivistic pion are simply blue-shifted. Spectra
of heavier particles – protons and antiprotons
especially – are modified di↵erently, leading to
a strong enhancement of the proton/pion ratio
at pt > 1 � 3 GeV . This e↵ect, the manifesta-
tion of the collective radial flow, was suggested
and searched for but not found in [4] using the
min.bias ISR pp data long ago. It works spec-
tacularly in AuAu collisions at RHIC and PbPb
collisions at LHC. The same e↵ect should be
now looked at in the (triggered) high multiplic-
ity pA and pp events.

B. The viscosity e↵ect on the radial flow

Here we continue to discuss the radial flow
using Gubser’s solution [18], now adding the
viscosity e↵ect. The equation for the reduced
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FIG. 2: (color online) The three horizontal lines
correspond to the initial time: from bottom up AA
(blue solid), pA (dash black) and pp (red dash-dot).
The corresponding three curves with the same color
are the lines at which the temperature reaches the
same freeze-out value, set to be Tf = 150 MeV .
The two thin solid lines correspond to the values
of the variable ⇢ = �2.2 (lower) and �0.2 (upper).
Those values are used as initial and final values in
the evolution of higher harmonics.

temperature T̂ = ✏̂1/4 using the combination of
variables

g =
1� t2 + r2

2t
(18)

becomes an ordinary di↵erential equation

3(1+g2)3/2 dT̂

dg
+2g

p
1 + g2T̂ +g2H0 = 0 (19)

where the last term contains a new prameter

H0 =
⌘

✏3/4
=

⌘

s

4
3
f

1/4
⇤ (20)

for ⌘/s = 0.134 we will use as representative
number H0 = 0.33.

The equation is solvable analytically in terns
of certain hypergeometric functions (see below)
or numerically. For AA collisions we find that
the role of the viscous corrections is truly neg-
ligible. The curves are the same within their
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plotted width. (This is, of course, well known
from numerical studies in the literature during
the last several years.) For the pA and pp cases
one can see a di↵erence between ideal and vis-
cous , as we show in Figs. 3 through the re-
duced temperature dependence T = T̂ /t at cer-
tain positions. The viscous e↵ect is maximal
at early times, and then the viscous and ideal
curves meet. As expected, the viscous e↵ects
are very small at the fireball center r = 0, and
become much more noticeable at its edge, see
the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
laying the freezeout.

The main conclusion of this section is that
a “realistic” viscosity of the sQGP is so small,
that it provides a rather modest correction to
the radial flow, even for the pA and pp collisions
under consideration.

C. High angular harmonics

If the e↵ects of order l/R are not negligible,
they should be included. Keeping the first or-
der gradient of the velocities leads to the cel-
ebrated Navier-Stokes hydrodynamics. As one
includes the second order corrections, one get
other known approximations such as the Israel-
Stewart approximation. Recently, using the
AdS/CFT approach about a dozen of lowest or-
der coe�cients in the gradient expansion were
identified with alternating signs. An approxi-
mate PADE-like re-summation of these terms
was suggested by Lublinsky and Shuryak [20].
We will discuss the role of these higher order
gradient corrections in section III.

The e↵ects of viscosity are likely to damp
more the higher angular flow moments, as first
discussed by Staig and Shuryak [21] and recenty
applied to wast range of RHIC data [22] . The
“viscous filter” for the amplitude of a sound
perturbation with the wave vector k is

Pk =
�Tµ⌫(t, k)
�Tµ⌫(0, k)

= exp
✓
�2

3
⌘

s

k2t

T

◆
(21)

Since the scaling of the freeze out time is linear
in R or tf ⇡ 2R, and the wave vector k corre-
sponds to the fireball circumference which is m
times the wavelength, then
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and viscous hydrodynamics with ⌘/s = 0.132
(dashed) lines. The upper pair of (red) curves are
for pp, the lower (black) ones for pA collisions. The
upper plot is for r = 1, the lower plot for r = 3.
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Staig+ES (2010) suggested to use ``acoustic” 
damping expression
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the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
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The main conclusion of this section is that
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that it provides a rather modest correction to
the radial flow, even for the pA and pp collisions
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they should be included. Keeping the first or-
der gradient of the velocities leads to the cel-
ebrated Navier-Stokes hydrodynamics. As one
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gradient corrections in section III.
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it is clear that this expression is way too strong dissipation: we need more realistic expressions, from 
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FIG. 4: (color online) Squared amplitude dissipa-
tion factor P 2

m (as it appears in 2-particle correla-
tors) for ⌘/s = .134 as a function of the azimuthal
harmonics m for AA (black) solid, pA (blue) dash
and pp (red) dash-dot.

The exponent contains the product of two small
factors, ⌘/s and 1/TR times the harmonics
number squared. For PbPb LHC collisions one
finds that

1
TR

= O(1/10) (24)

and a comparable ⌘/s. For the most central
bin – so that the elliptic flow does not obscure
genuine higher harmonics via nonlinear e↵ects
– one can immediately see from this expres-
sion why we observed harmonics for m = 1..6,
with m � 7 still in the statistical noise (see
e.g.comparison to hydro in [23]).

Proceeding to pp and pA collision (at LHC)
by keeping a similar initial temperature Ti ⇠
400 MeV ⇠ 1/(0.5 fm) but a smaller size R,
results in a macro-to-micro parameter that is
no longer small, or 1/TR ⇠ 0.5, 1, respectively.
For a usual liquid/gas, with ⌘/s > 1, there
would not be any small parameter left and one
would have to conclude that hydrodynamics is
inapplicable for such a small system. How-
ever, since the quark-gluon plasma is an ex-
ceptionally good liquid with a very small ⌘/s,
which would keep this damping under control

for m = 0, 1, 2, while harmonics with m � 3
would be hard to see.

D. Angular harmonics of Gubser flow

Unfortunately, the formulae we have used so
far are, strictly speaking, only true for asymp-
totically high harmonics, with m� 1. Since we
are actually interested in not so large m = 2, 3,
we may check how the viscous filter works using
a better approximation. For that, we return to
Gubser’s flow and consider its angular pertur-
bations. The latters have been considered in
the literature [19, 23].

In [19] Gubser and Yarom re-derived the ra-
dial solution by going into the co-moving frame
via a coordinate transformation from the ⌧, r to
a new set ⇢, ✓ given by:

sinh ⇢ = �1� ⌧2 + r2

2⌧
(25)

tan ✓ =
2r

1 + ⌧2 � r2
(26)

In the new coordinates the rescaled metric
reads:

dŝ2 = �d⇢2 + cosh2 ⇢
�
d✓2 + sin2 ✓d�2

�
+ d⌘2

and we will use ⇢ as the “new time” coordinate
and ✓ as a new “space” coordinate. In the new
coordinates the fluid is at rest, so the velocity
field has only nonzero u⇢. The temperature is
now dependent only on the new time ⇢. For
nonzero viscosity the solution is

T̂ =
T̂0

(cosh ⇢)2/3
+

H0 sinh3 ⇢

9(cosh ⇢)2/3

⇥ 2F1

✓
3
2
,
7
6
;
5
2
,� sinh2 ⇢

◆
(27)

with T̂ = ⌧f
1/4
⇤ T and f⇤ = ✏/T 4 = 11 as in

[18].
Small perturbations to Gubsers flow obey lin-

earized equations which have also been derived
in [19]. We start with the zero viscosity case,
so that the background temperature (now to be
called T0) will be given by just the first term in
(27). The perturbations over the previous so-
lution are defined by

T̂ = T̂0(1 + �) (28)
uµ = u0 µ + u1µ (29)

7

plotted width. (This is, of course, well known
from numerical studies in the literature during
the last several years.) For the pA and pp cases
one can see a di↵erence between ideal and vis-
cous , as we show in Figs. 3 through the re-
duced temperature dependence T = T̂ /t at cer-
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become much more noticeable at its edge, see
the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
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The main conclusion of this section is that
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that it provides a rather modest correction to
the radial flow, even for the pA and pp collisions
under consideration.
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identified with alternating signs. An approxi-
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was suggested by Lublinsky and Shuryak [20].
We will discuss the role of these higher order
gradient corrections in section III.
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more the higher angular flow moments, as first
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applied to wast range of RHIC data [22] . The
“viscous filter” for the amplitude of a sound
perturbation with the wave vector k is
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Is anisotropic flow really acoustic?1

Roy A. Lacey,1, ∗ Yi Gu,1 X. Gong,1 D. Reynolds,1 N. N. Ajitanand,1 J. M. Alexander,1 A. Mawi,1 and A. Taranenko12

1Department of Chemistry, Stony Brook University,3

Stony Brook, NY, 11794-3400, USA4

(Dated: January 3, 2013)5

The flow harmonics for charged hadrons (vn) and their ratios (vn/v2)n≥3, are studied for a broad
range of transverse momenta (pT ) and centrality (cent) in Pb+Pb collisions at

√

sNN = 2.76 TeV.
They indicate a characteristic pattern of viscous damping consistent with the dispersion relation
for sound propagation in the plasma produced in these collisions. This pattern is not only a unique
signature for anisotropic expansion modulated by viscosity, it provides essential constraints for the
relaxation time and a distinction between two of the leading models for initial eccentricity. These
constraints could be important for a more precise determination of the specific shear viscosity η/s.

PACS numbers: 25.75.-q, 25.75.Dw, 25.75.Ld6

Azimuthal anisotropy measurements are a key ingre-7

dient in ongoing efforts to pin down the precise value8

of the transport coefficients of the plasma produced in9

heavy ion collisions at both the Relativistic Heavy Ion10

Collider (RHIC) and the Large Hadron Collider (LHC).11

The Fourier coefficients vn are routinely used to quantify12

such measurements as a function of collision centrality13

(cent) and particle transverse momentum pT ;14

dN

dφ
∝

(

1 + 2
∑

n=1

vn(pT ) cosn(φ− ψn)

)

, (1)

where φ is the azimuthal angle of an emitted particle, and15

ψn are the azimuths of the estimated participant event16

planes [1, 2];17

vn(pT ) = 〈cosn(φ− ψn)〉

where the brackets denote averaging over particles and18

events. The distribution of the azimuthal angle difference19

(∆φ = φa − φb) between particle pairs with transverse20

momenta paT and pbT (respectively) is also commonly used21

to quantify the anisotropy [3–6];22

dNpairs

d∆φ
∝

(

1 +
∑

n=1

2vn,n(p
a
T , p

b
T ) cos(n∆φ)

)

, (2)

23

vn,n(p
a
T , p

b
T ) = vn(p

a
T )vn(p

b
T ),

where the latter factorization has been demonstrated to24

hold well for pT ! 3 GeV/c for particle pairs with a25

sizable pseudorapidity gap ∆ηp [5, 6].26

The coefficients vn(pT , cent) (for pT ! 3 GeV/c) have27

been attributed to an eccentricity-driven hydrodynamic28

expansion of the plasma produced in the collision zone29

[7–13]. That is, a finite eccentricity moment εn drives30

uneven pressure gradients in- and out of the event plane31

ψn, and the resulting expansion leads to the anisotropic32

flow of particles about this plane. In this model frame-33

work, the values of vn(pT , cent) are sensitive to the mag-34

nitude of both εn and the transport coefficient η/s (i.e.35

the specific shear viscosity or ratio of shear viscosity η to36

entropy density s) of the expanding hot matter [8, 11, 14–37

18]. Thus, vn(pT , cent) measurements provide a crucial38

bridge to the extraction of η/s from data.39

Initial estimates of η/s from vn measurements [11, 12,40

16, 17, 19–24] have all indicated a small value (η/s ∼ 1−441

times the lower conjectured bound of 1/4π [25]). Recent42

3+1D hydrodynamic calculations, which have been quite43

successful at reproducing vn(pT , cent) measurements [26–44

28], have also indicated a similarly small value of η/s !45

2/4π. However, the precision of all of these extractions46

has been hampered by significant theoretical uncertainty,47

especially those arising from poor constraints for the ini-48

tial eccentricity and the relaxation time. One approach49

to the resolution of this issue is to target these uncertain-50

ties for systematic study, with the aim of establishing re-51

liable upper and lower bounds for η/s [12, 29]. An alter-52

native approach, adopted in this work, is to ask whether53

better constraints for these theoretical bottlenecks can54

be developed to aid precision extractions of η/s?5556

Given the acoustic nature of anisotropic flow (i.e. it is57

driven by pressure gradients), a transparent way to eval-58

uate the strength of the dissipative effects which reduce59

the magnitude of vn(pT , cent), is to consider the attenua-60

tion of sound waves in the plasma. In the presence of vis-61

cosity, sound intensity is exponentially damped e(−r/Γs)
62

relative to the sound attenuation length Γs. This can63

be expressed as a perturbation to the energy-momentum64

tensor Tµν [31]65

δTµν(n, t) = exp
(

−βn2
)

δTµν(0), β =
2

3

η

s

1

R̄2

t

T
, (3)

which incorporates the dispersion relation for sound66

propagation, as well as the spectrum of initial (t = 0)67

perturbations associated with the eccentricity moments.68

The latter reflects the collision geometry and its associ-69

ated density driven fluctuations. Here, the viscous coef-70

ficient β ∝ η/s, t is the expansion time, T is the temper-71

ature, k = n/R̄ is the wave number (i.e. 2πR̄ = nλ for72

n ≥ 1) and R̄ is the transverse size of the collision zone.73ar
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uate the strength of the dissipative effects which reduce59
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FIG. 1. (a)-(d) vn/εn vs. n for charged hadrons for several pT selections in 20-30% central Pb+Pb collisions at
√

sNN = 2.76

TeV; (e) β
′

vs. pT for the same centrality selection. The vn data are taken from Refs. [6, 30]; the dashed and dotted curves
represent fits (see text).

The viscous corrections to vn implied in Eq. 3, do not74

indicate an explicit pT -dependence. However, a finite75

viscosity in the plasma results in an asymmetry in the76

energy-momentum tensor which manifests as a correction77

to the local particle distribution (f) at freeze-out [23];78

f = f0 + δf(p̃T ), p̃T =
pT
T

, (4)

where f0 is the equilibrium distribution and δf(p̃T ) is79

its first order correction. The latter leads to the pT -80

dependent viscous coefficient β
′

(p̃T ) ∝ β/pαT , where the81

magnitude of α is related to the relaxation time τR(pT ).82

Equations 3 and 4 suggest that for a given central-83

ity, the viscous corrections to the flow harmonics vn(pT ),84

grow exponentially as n2;85

vn(pT )

εn
∝ exp

(

−β
′

n2
)

, (5)

and the ratios (vn(pT )/v2(pT ))n≥3 can be expressed as;86

vn(pT )

v2(pT )
=
εn
ε2

exp
(

−β
′

(n2 − 4)
)

, (6)

indicating that they only depend on the eccentricity ra-87

tios and the relative viscous correction factors. Note as88

well that Eq. 6 shows that the higher order harmonics89

vn,n≥3, can all be expressed in terms of the lower order90

harmonic v2, as has been observed recently [6, 32].91

If validated, the acoustic dissipative patterns summa-92

rized in Eqs. 5 and 6, indicate that estimates for α, β93

and εn/ε2 can be extracted directly from the data. Here,94

we perform validation tests for these dissipative patterns95

with an eye toward more stringent constraints for τR, η/s96

and the distinction between different eccentricity models.97

The data employed in our analysis are taken from mea-98

surements by the ATLAS collaboration for Pb+Pb colli-99

sions at
√
sNN = 2.76 TeV [6, 30]. These measurements100

exploit the event plane analysis method (c.f. Eq. 1),101

as well as the two-particle ∆φ correlation technique (c.f.102

Eq. 2) to obtain robust values of vn(pT , cent). We di-103104

vide these values by εn(cent) and plot them as a function105

of n, to make an initial test for viscous damping com-106

patible with sound propagation in the plasma produced107

in these collisions. Monte Carlo Glauber (MC-Glauber)108

simulations were used to compute εn(cent) from the two-109

dimensional profile of the density of sources in the trans-110

verse plane ρs(r⊥), with weight ω(r⊥) = r⊥
n [33].111

The open circles in Figs. 1 (a)-(d) show representa-112

tive examples of vn/εn vs. n for several pT cuts, for the113

20-30% centrality selection. The dashed curves which114

indicate fits to the data with Eq. 5, confirm the ex-115

pected exponential growth of the viscous corrections to116

vn, as n2. The pT -dependent viscous coefficients β
′

(p̃T )117

obtained from these fits, are summarized in Fig. 1 (e);118

they show the expected 1/pαT dependence attributable to119
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plotted width. (This is, of course, well known
from numerical studies in the literature during
the last several years.) For the pA and pp cases
one can see a di↵erence between ideal and vis-
cous , as we show in Figs. 3 through the re-
duced temperature dependence T = T̂ /t at cer-
tain positions. The viscous e↵ect is maximal
at early times, and then the viscous and ideal
curves meet. As expected, the viscous e↵ects
are very small at the fireball center r = 0, and
become much more noticeable at its edge, see
the r = 3 curve. In fact in this case the vis-
cosity completely stops the cooling (decrease of
the temperature) for a significant time, thus de-
laying the freezeout.

The main conclusion of this section is that
a “realistic” viscosity of the sQGP is so small,
that it provides a rather modest correction to
the radial flow, even for the pA and pp collisions
under consideration.

C. High angular harmonics

If the e↵ects of order l/R are not negligible,
they should be included. Keeping the first or-
der gradient of the velocities leads to the cel-
ebrated Navier-Stokes hydrodynamics. As one
includes the second order corrections, one get
other known approximations such as the Israel-
Stewart approximation. Recently, using the
AdS/CFT approach about a dozen of lowest or-
der coe�cients in the gradient expansion were
identified with alternating signs. An approxi-
mate PADE-like re-summation of these terms
was suggested by Lublinsky and Shuryak [20].
We will discuss the role of these higher order
gradient corrections in section III.

The e↵ects of viscosity are likely to damp
more the higher angular flow moments, as first
discussed by Staig and Shuryak [21] and recenty
applied to wast range of RHIC data [22] . The
“viscous filter” for the amplitude of a sound
perturbation with the wave vector k is

Pk =
�Tµ⌫(t, k)
�Tµ⌫(0, k)

= exp
✓
�2

3
⌘

s

k2t

T

◆
(21)

Since the scaling of the freeze out time is linear
in R or tf ⇡ 2R, and the wave vector k corre-
sponds to the fireball circumference which is m
times the wavelength, then
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plot subs r = 3, Tpp033 / t 4 , subs r = 3, Tpp000 / t 4 , subs r = 3, TpA033 / t 4 ,

subs r = 3, TpA000 / t 4 , t = 0.5 ..4, color = black, black, red, red , linestyle = dash,

solid, dash, solid , axes = boxed, thickness = 3, axesfont = Times, bold, 15 , labelfont

= Times, bold, 15
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plot subs r = 1, Tpp033 / t , subs r = 1, Tpp000 / t , subs r = 1, TpA033 / t , subs r = 1,
TpA000 / t , t = 0.2 ..2, color = black, black, red, red , linestyle = dash, solid, dash, solid ,
axes = boxed, thickness = 3, axesfont = Times, bold, 15 , labelfont = Times, bold, 15 ;FIG. 3: (color online) The temperature versus di-

mensionless time t, for ideal hydrodynamics (solid)
and viscous hydrodynamics with ⌘/s = 0.132
(dashed) lines. The upper pair of (red) curves are
for pp, the lower (black) ones for pA collisions. The
upper plot is for r = 1, the lower plot for r = 3.

2⇡R = m
2⇡

k
(22)

Inserting these values in (21) yields

Pm = exp

�m2 4

3

⇣⌘

s

⌘ ✓
1
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◆�
(23)
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ratio of the m = 3 to m = 2 harmonics
✓
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3
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2

◆2

⇡ 0.12
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◆2
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✏pA
3

✏pA
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!2

✓
vpp
3

vpp
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✓

✏pp
3

✏pp
2

◆2

Assuming ✏3/✏2 ⇠ 1 one finds that in pA we
predict v3/v2 ⇡ 1/3, which agrees nicely with
the ALICE data [8]. For pp we have v3/v2 ⇡
1/7 which is probably too small to be seen.

One may further ask why the experiment
shows a very large v3/v2 > 1 in AA? The rea-
son is explained in detail in [23]: let us only say
that it is related with “sound horizon” issue
and large temperature correction in the third
harmonics exceeding that for the elliptic term

✓
�AA
3 (⇢f )

�AA
3 (⇢0)

◆2

⇡ 1

✓
�AA
2 (⇢f )

�AA
2 (⇢0)

◆2

⇡ 0.1 (38)

which makes a very large contribution at freeze-
out. This feature pointed out in [23] is nicely
confirmed by the AA data (but not all hydro
works). As one can see from our plots of �l(⇢),
it is not the case for pA and pp cases.

III. HIGHER GRADIENTS

A. The LS resummation

The Navier-Stokes approximation used so far
only includes the first order terms in the gradi-
ent expansion. In this section we qualitatively
discuss the role of the higher derivatives. Let
us define symbolically the corresponding con-
tribution to the stress tensor as

�Tµ⌫ =
X

n

cnPµ⌫
n (T, u↵) ⇠

X

n

cn

✓
1

TR

◆n

(39)
with coe�cients cn and certain kinematical
structures with i derivatives Pµ⌫

n . Their order-
of-magnitude is given by the corresponding

powers of the main hydro small parameter
1/TR, and when it is not as small as in AA
collisions but rather becomes of the order one
one should obviously ask about the magnitude
of those terms, as well as about of the series
convergence.

AdS/CFT became an indispensable tool – in
fact the only one we have – to address this is-
sue for the sQGP. Consistent procedure deriv-
ing hydrodynamics including in principle any
number of gradients from Einsteins equation
has been outlined in Ref. [25]. In practice, it has
been only worked out to second order. However
for small (linearized) perturbations the correla-
tors of the two stress tensors can be and were
calculated to higher order in frequency and
wave vector !, k expansion, extending the orig-
inal celebrated ⌘/s = 1/4⇡ calculation [24] to
about a dozen further coe�cients.

An approximate PADE-like re-summation of
the higher order terms has been suggested by
Lublinsky and Shuryak (LS) [20]. The main
point is to notice the alternating signs of the
series, which calls for an resummation a la geo-
metrical series. Here we discuss only the single
pole resummation model or LS2 in [20] in which
the Navier-Stokes viscosity or NS is subtituted
by an e↵ective viscosity

⌘LS2(!, k) =
⌘NS

1� ⌘2,0k2/(2⇡T )2 � i!⌘0,1/(2⇡T )
(40)

Note that (40) involves only two dimensionless
coe�cients

⌘2,0 = �1
2

⌘0,1 = 2� ln2 = 1.30 (41)

approximately reproducing all known terms as
well as the large-k, ! behavior. The resumma-
tion into the denominator suggests reduced vis-
cous e↵ect as k grows. As a result, the LS pre-
diction is that in pp collisions one gets e↵ec-
tively a smaller viscosity than in AA!

This conclusion may sound too good to
be true, and recently one of us has studied
the “strong shock wave” problem [26] in the
AdS/CFT setting, using first principles (solv-
ing Einstein equations) and comparing to the
LS resummation scheme. While this problem
is also “hydro-at-its-edge” type, the gradients
of the shock profile has no small parameter

9

with

û0 µ = (�1, 0, 0, 0) (30)
û1µ = (0, u✓(⇢, ✓, �), u�(⇢, ✓,�), 0) (31)

� = �(⇢, ✓, �) (32)

The exact solution can be found by us-
ing the separation of variables �(⇢, ✓, �) =
R(⇢)⇥(✓)�(✓). In the non-viscous case, that
we are now discussing, each of the three equa-
tions

R(⇢) +
4
3

tanh ⇢R(⇢) +
�

3 cosh2 ⇢
R(⇢) = 0

⇥(✓) +
1

tan ✓
⇥(✓) +

✓
�� m2

sin2 ✓

◆
⇥(✓) = 0

�(�) + m2�(�) = 0 (33)

are analytically solvable, with the results dis-
cussed in [23]. The parts of the solution de-
pending on ✓ and � can be combined in order to
form spherical harmonics Ylm(✓,�), such that
�(⇢, ✓,�) / Rl(⇢)Ylm(✓,�).

The basic equations for the ⇢-dependent part
of the perturbation, now with viscosity terms,
can be written as a system of coupled first-
order equations [19]. We are assuming rapid-
ity independence, thus the system of equations
(107),(108) and (109), from the referred pa-
per, becomes two coupled equations, for (the
⇢-dependent part of) the temperature and ve-
locity perturbations

d~w

d⇢
= ��~w , ~w =

✓
�v

vv

◆
(34)

where the index v stands for viscous and the
matrix components are,

�11 =
H0 tanh2 ⇢

3T̂b

�12 =
l(l + 1)

3T̂b cosh2 ⇢

⇣
H0 tanh ⇢� T̂b

⌘

�21 =
2H0 tanh ⇢

H0 tanh ⇢� 2T̂b

+ 1

�22 = (8T̂ 2
b tanh ⇢

+H0T̂b

✓�4(3l(l + 1)� 10))
cosh2 ⇢

� 16
◆

+6H2
0 tanh3 ⇢)/(6T̂b

⇣
H0 tanh ⇢� 2T̂b

⌘
)

(35)

Before we display the solutions, we need to
translate our space-time plot into the ⇢� ✓ co-
ordinates. The initiation surface t = ti are not
the ⇢ = const surfaces. The freezeout ones also
do not correspond to fixed ⇢ because the tem-
perature is T = T̂ (⇢)/t(⇢, ✓). So, in both cases
one has to decide which points on the initiation
and final surfaces are most important. The thin
solid lines in Fig.2 approximately represent the
initial ⇢i and the final ⇢f values for all three
systems. Therefore, we will solve the equations
between those two surfaces.

In Fig.5 we show the solution of the ⇢ evo-
lution of the two variables, the temperature
perturbation and velocity �l(⇢), vl(⇢). As one
can see, all of them start at ⇢0 = �2 from
the same �l = 1 value. While the elliptic
one l = 2 (black solid curves) change more
slowly, higher harmonics oscillate more. The
ratios vm/✏m are predicted by the hydrodynam-
ical solution, complemented by the Cooper-Fry
freezeout. Since the latter is rather involved
(see [23] for discussion in detail) we will rea-
son on the basis of the former alone. Assuming
that the perturbation amplitudes are relatively
small and everything scales approximately lin-
ear, and vl at freeze out dominate, one can re-
late the relative magnitude of the harmonics
into the measured two-particle correlation func-
tions to scale as squares of the flow harmonics

(vAA
2 )2 : (vpA

2 )2 : (vpp
2 )2

= 0.5(✏AA
2 )2 : 0.3(✏pA

2 )2 : 0.16(✏pp
2 )2 (36)

This is qualitatively consistent with the
squared damping of the amplitude of the pre-
vious section, for m = 2.

A comparison to CMS data shows that the
pp data show smaller v2 as compared to pA
data. Quantitatively, the ratio is about factor
1/4 (see Fig.3 of [7]) rather than 1/2 which the
hydro solution provides. Perhaps it is because
the pp collisions create a somewhat more spher-
ical fireball, with ✏pp

2 < ✏pA
2 , in spite of being

smaller in size. We will return to this issue at
the end of the paper.

Let us now compare in a similar manner the

small v3/v2

stronger damping in pA,pp



resummation of higher gradients a la 
Lublinsky-Shuryak
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lapl is 2-dim laplacian so it is not just a derivative
now we should put Tf in MeV and q for our 3 examples 
LSAA := subs(q = 197*qAA, T = 150, 1/LSinv): LSpA := subs(q = 197*
qpA, T = 150, 1/LSinv): LSpp := subs(q = 197*qpp, T = 150, 1/LSinv)
: plot([subs(t = 1.2, LSAA), subs(t = 1.5, LSpA), subs(t = 2.5, 
LSpp)], r = 0 .. 1.5,color = [black, blue, red], linestyle = 
[solid, dash, dashdot], axes = boxed, thickness = 3, axesfont = 
[Times, bold, 15], labelfont = [Times, bold, 15]);
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Assuming ✏3/✏2 ⇠ 1 one finds that in pA we
predict v3/v2 ⇡ 1/3, which agrees nicely with
the ALICE data [8]. For pp we have v3/v2 ⇡
1/7 which is probably too small to be seen.

One may further ask why the experiment
shows a very large v3/v2 > 1 in AA? The rea-
son is explained in detail in [23]: let us only say
that it is related with “sound horizon” issue
and large temperature correction in the third
harmonics exceeding that for the elliptic term

✓
�AA
3 (⇢f )

�AA
3 (⇢0)

◆2

⇡ 1

✓
�AA
2 (⇢f )

�AA
2 (⇢0)

◆2

⇡ 0.1 (38)

which makes a very large contribution at freeze-
out. This feature pointed out in [23] is nicely
confirmed by the AA data (but not all hydro
works). As one can see from our plots of �l(⇢),
it is not the case for pA and pp cases.

III. HIGHER GRADIENTS

A. The LS resummation

The Navier-Stokes approximation used so far
only includes the first order terms in the gradi-
ent expansion. In this section we qualitatively
discuss the role of the higher derivatives. Let
us define symbolically the corresponding con-
tribution to the stress tensor as

�Tµ⌫ =
X

n

cnPµ⌫
n (T, u↵) ⇠

X

n

cn

✓
1

TR

◆n

(39)
with coe�cients cn and certain kinematical
structures with i derivatives Pµ⌫

n . Their order-
of-magnitude is given by the corresponding

powers of the main hydro small parameter
1/TR, and when it is not as small as in AA
collisions but rather becomes of the order one
one should obviously ask about the magnitude
of those terms, as well as about of the series
convergence.

AdS/CFT became an indispensable tool – in
fact the only one we have – to address this is-
sue for the sQGP. Consistent procedure deriv-
ing hydrodynamics including in principle any
number of gradients from Einsteins equation
has been outlined in Ref. [25]. In practice, it has
been only worked out to second order. However
for small (linearized) perturbations the correla-
tors of the two stress tensors can be and were
calculated to higher order in frequency and
wave vector !, k expansion, extending the orig-
inal celebrated ⌘/s = 1/4⇡ calculation [24] to
about a dozen further coe�cients.

An approximate PADE-like re-summation of
the higher order terms has been suggested by
Lublinsky and Shuryak (LS) [20]. The main
point is to notice the alternating signs of the
series, which calls for an resummation a la geo-
metrical series. Here we discuss only the single
pole resummation model or LS2 in [20] in which
the Navier-Stokes viscosity or NS is subtituted
by an e↵ective viscosity

⌘LS2(!, k) =
⌘NS

1� ⌘2,0k2/(2⇡T )2 � i!⌘0,1/(2⇡T )
(40)

Note that (40) involves only two dimensionless
coe�cients

⌘2,0 = �1
2

⌘0,1 = 2� ln2 = 1.30 (41)

approximately reproducing all known terms as
well as the large-k, ! behavior. The resumma-
tion into the denominator suggests reduced vis-
cous e↵ect as k grows. As a result, the LS pre-
diction is that in pp collisions one gets e↵ec-
tively a smaller viscosity than in AA!

This conclusion may sound too good to
be true, and recently one of us has studied
the “strong shock wave” problem [26] in the
AdS/CFT setting, using first principles (solv-
ing Einstein equations) and comparing to the
LS resummation scheme. While this problem
is also “hydro-at-its-edge” type, the gradients
of the shock profile has no small parameter

AA

pA

pp
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tively. The results are the equations of the LS
hydrodynamics. Obviously they have two ex-
tra derivatives and thus need more initial con-
ditions for solution. Instead of solving these
equations, we will simply check what the ac-
tion by the LS di↵erential operator does to the
solution profiles we already have. For any func-
tion of the coordinates f(t, r) we define the “LS
operator” as

O�1
LS(f) = 1 +

q2

2(2⇡T )2

✓
@2f

@r2
+

1
r

@f

@r

◆
1
f

+ (2� ln2)
q

2⇡T

@f

@t

1
f

(43)

and can easily evaluate it. As one can see, large
systems have a small q parameter and the cor-
rections are parametrically small.

The issue is what happens “on the hydro
edge”, when the corrections have no formal
small parameter. In Fig.6 we show the (in-
verse) action of (43) on the zeroth other tem-
perature profile of the Gubser flow as a func-
tion of r. We have used the freeze-out temper-
ature Tf = 150 MeV and the indicated respec-
tive freeze-out times for pp, pA and AA. The
higher gradient corrections for AA and pA are
inside the few percent range from 1, while in
the pp case the correction is larger, yet still in
the 15 percent range. We thus conclude, that if
the LS resummation represents the role of the
higher gradients, the overall corrections remain
still small even for the pp case.

B. The momentum dependence of the
harmonics and viscosity at freeze out

The issue of higher gradients should also be
addressed at the kinetic level, as emphasized
by Teaney [27]. Equilibrium local distribution
function of (quasi)particles should be corrected
by the gradient expansion terms

f(p) = f0(p) + f1(p)
⌘

s
pµp⌫@µu⌫

+(higher gradients) (44)

which are negligible in the macroscopic limit
TR ! 1 but not in the “hydro-at-its-edge”
problems like the pp case we discuss here. The
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lapl:=diff(diff(f,r),r)+ (1/r)*diff(f,r);

lapl :=
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lapl is 2-dim laplacian so it is not just a derivative
now we should put Tf in MeV and q for our 3 examples 
LSAA := subs(q = 197*qAA, T = 150, 1/LSinv): LSpA := subs(q = 197*
qpA, T = 150, 1/LSinv): LSpp := subs(q = 197*qpp, T = 150, 1/LSinv)
: plot([subs(t = 1.2, LSAA), subs(t = 1.5, LSpA), subs(t = 2.5, 
LSpp)], r = 0 .. 1.5,color = [black, blue, red], linestyle = 
[solid, dash, dashdot], axes = boxed, thickness = 3, axesfont = 
[Times, bold, 15], labelfont = [Times, bold, 15]);
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FIG. 6: (color online) The action of the LS operator
OLS (43) on the zeroth order (non-viscous) temper-
ature profile, the first term of (27). The three lines
correspond to AA (black) solid, pA (blue) dashed
and pp (red) dash-dot.

main point in [27] is that Lorentz covariance
forces any extra derivative to carry a particle
momentum. As a result, the expansion param-
eter of the n-th term is

⌘

s

✓
p

T

1
TR

◆n

(45)

In AA collisions the smallness of the second fac-
tor allows p/T to become large or O(10), before
the macroscopic theory breaks down. Indeed,
as supported by the by the data, the higher har-
monics of the flow agree with this estimate for
transverse momenta of the order of pt ⇡ 3 GeV,
or pt/Tf ⇡ 20.

Following this line of reasoning, and turning
to the case of pp and pA collisions, the sec-
ond parameter is no longer small. Therefore we
expect the validity region of the macroscopic
theory to be strongly reduced, say to a much
smaller region in pt/Tf ⇠ O(1).

We known it cannot be correct, as both CMS
and ATLAS are not even able to observe soft
particles. In fact, as seen from Fig.4(e) of [9],
the elliptic flow v2(pt) in pA rises linearly to
about 2 GeV/c, where the presumed viscosity
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diverge.
AdS/CFT is an indispensable tool – in fact

the only one we have – to address this issue
for the sQGP. A consistent procedure deriv-
ing hydrodynamics and including in principle
any number of gradients from Einsteins equa-
tion has been outlined in Ref. [26]. In prac-
tice, it has been worked out to second order
only. However for small (linearized) perturba-
tions the correlators of the two stress tensors
can be calculated to higher order in frequency
and wave vector !, k, extending the original cel-
ebrated ⌘/s = 1/4⇡ calculation [25] to about a
dozen further coe�cients.

An approximate PADE-like re-summation of
the higher order terms has been suggested by
Lublinsky and Shuryak (LS) [21]. The main
point is to notice the alternating signs of the
series, which calls for an re-summation a the
geometrical series. Here we discuss only the
single pole resummation model or LS2 in [21]
in which the Navier-Stokes viscosity or NS is
subtituted by an e↵ective viscosity

⌘LS2(!, k) =
⌘NS

1� ⌘2,0k2/(2⇡T )2 � i!⌘0,1/(2⇡T )
(40)

Note that (40) involves only two dimensionless
coe�cients

⌘2,0 = �1
2

⌘0,1 = 2� ln2 = 1.30 (41)

approximately reproducing all known terms
as well as the large-k,! behavior. The
re-summation into the denominator suggests
reduced viscous e↵ect as k grows. As a result,
the LS prediction is that in pp collisions one
gets e↵ectively a smaller viscosity than in AA!

This conclusion may sound too good to
be true, and recently one of us has studied
the “strong shock wave” problem [27] in the
AdS/CFT setting, using first principles (solv-
ing Einstein equations) and comparing to the
LS resummation scheme. While this problem
is also “hydro-at-its-edge” type, the gradients
of a shock profile have no small parameter
k/2⇡T ⇠ O(1). The deviations between the NS
and the exact (variational) solution of the corre-
sponding Einstein equations were indeed found
to be on the level of few percents only. Studies
of time-dependent collisions in bulk AdS/CFT

have found that the first-principle solution ap-
proaches the NS solution early on and quite ac-
curately, at the time when the higher gradients
by themselves are not small [28].

Changing k2, ! into derivatives

�k2/q2 ! (
@

@r
)2 +

1
r

@

@r

i!/q ! @

@t
(42)

makes the re-summed factor (with the denom-
inator) an integral operator. For any function
of the coordinates f(t, r) we define the “LS op-
erator” acting on a function f as

O�1
LS(f) = 1 +

q2

2(2⇡T )2

✓
@2f

@r2
+

1
r

@f

@r

◆
1
f

+ (2� ln2)
q

2⇡T

@f

@t

1
f

(43)

Schematically the resummed hydro equations
look as

(Euler) = ⌘OLS(Navier � Stokes) (44)

where OLS is an integral operator. However,
one can act with its inverse on the hydrody-
namical equation as a whole, acting on the Eu-
ler part but canceling it in the viscous term

O�1
LS(Euler) = ⌘(Navier � Stokes) (45)

These are the equations of the LS hydrodynam-
ics. Obviously they have two extra derivatives
and thus need more initial conditions for solu-
tion.

Instead of solving these equations, we will
simply check the magnitude of the corrections
appearing in the l.h.s due to the action by the
LS di↵erential operator on the (ideal Gubser)
solution used as a zeroth-order starting point.
As one can see, large systems have a small
q/T ⇠ 1/RT parameter and so these correc-
tions are parametrically small. The issue is
what happens “on the hydro edge”, when the
corrections have no formal small parameter.

In Fig.7 we show the (inverse) action of (43)
on the zeroth other temperature profile of the
Gubser flow as a function of r. We have used
the freeze-out temperature Tf = 150 MeV and
the indicated respective freeze-out times for pp,
pA and AA. The higher gradient corrections for



• the applicability of hydrodynamics  rests on two small parameters:                  
(i) the micro-to- macro ratio 1/TR,   (ii) the viscosity-to-entropy ratio η/s. 
For central AA collisions, both are O(1/10). For high multiplicity pA and pp 
collisions, the first parameter is no longer small 1/TR = O(1), prompting us 
to ask which hydrodynamical predictions are preserved by the smallness of 
only the second parameter η/s.

• After solving the hydrodynamical equations we found that the radial 
(axially symmetric) flow is little modified by viscosity and is 
in fact enhanced by higher transverse gradients. Thus our main 
prediction is an enhanced radial flow => a change in the observed pt spectra 
on the particle mass, or growing proton-to-pion-ratio with pt. The 
magnitude of the effect should be even larger ( => ALICE ?)

• Higher harmonics are penalized by larger viscous 
corrections. We obtained explicit solution for Gubser flow for m = 2, 3, 4 
as shown in Fig.5. We have found a small v3/v2 ≈ 1/3 ratio for pA in 
agreement with the reported ALICE data (in contrast to v3/v2 >1 in central AA).   
The value of v2 itself is also suppressed by viscosity, and the relative 
suppression we have found between the pp and pA collisions agree 
reasonably with the CMS data.

summary of the hydro
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